Specific oscillatory mode in the polar thermosphere
Heading:
1Fedorenko, AK, 1Zakharov, IV 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2012, 18 ;(2):26–32 |
https://doi.org/10.15407/knit2012.02.026 |
Publication Language: Ukrainian |
Abstract: Some features of behaviour of middle-scale acoustic gravity waves (AGW) in the polar region are investigated using the «Dynamics Explorer 2» satellite data. It is found that the oscillations of vertical component of velocity z V and relative concentration δn/n occur in phase for these AGW. The properties of the AGW are similar above both polar caps and for different seasons at altitudes from 250 to 350 km. The main characteristics of the polar waves, namely, the horizontal phase speed, period, true horizontal wavelength, vertical wavelength, propagation direction relative to the vertical, are determined. Value z k < 0 points to the wave propagation from sources that are below the satellite. The horizontal phase speed is about 700 m/s and the angle between the wave vector and surface is about 20°.
|
Keywords: acoustic gravity waves, polar region, «Dynamic Explorer 2» |
References:
1. Fedorenko A. K. Satellite observations of middlescale acoustic gravity waves above the polar caps, Kosm. nauka tehnol., 14 (5), 65—73 (2008) [in Russian].
https://doi.org/10.15407/knit2008.05.065
https://doi.org/10.15407/knit2008.05.065
2. Fedorenko A. K. Determination Characteristics of Atmospheric Gravity Waves in the Polar Regions Using Mass-Spectrometer Satellite Measurements, Radio Physics and Radio Astronomy, 14 (3), 254—265 (2009) [in Ukrainian].
3. Afraimovich E. L., Kosogorov E. A., Lesyuta O. S., et al. Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network, Ann. geophys., 19, 723—731 (2001).
https://doi.org/10.5194/angeo-19-723-2001
https://doi.org/10.5194/angeo-19-723-2001
4. Carignan G. R., Block B. P., Maurer J. C., et al. The neutral mass spectrometer on Dynamics Explorer, Space Sci. Instrum., 5, 429—441 (1981).
5. Dudis J. J., Reber C. A. Composition effects in thermospheric gravity waves, Geophys. Res. Lett., 3 (12), 727—730 (1976).
https://doi.org/10.1029/GL003i012p00727
https://doi.org/10.1029/GL003i012p00727
6. Francis S. H. Global propagation of atmospheric gravity waves, Revs J. Atmos. and Ter. Phys., 37, 1011—1054 (1975).
https://doi.org/10.1016/0021-9169(75)90012-4
https://doi.org/10.1016/0021-9169(75)90012-4
7. Hajkovicz L. A. Auroral electrojet effect on the global occurrence pattern of large scale travelling ionospheric disturbances, Planet. Space. Sci., 39, 1189—1196 (1991).
https://doi.org/10.1016/0032-0633(91)90170-F
https://doi.org/10.1016/0032-0633(91)90170-F
8. Hines C. O. Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441— 1481 (1960).
https://doi.org/10.1139/p60-150
https://doi.org/10.1139/p60-150
9. Johnson F. S., Hanson W. B., Hodges R. R., et al. Gravity waves near 300 km over the polar caps, J. Geophys. Res., 100, 23993—24002 (1995).
https://doi.org/10.1029/95JA02858
https://doi.org/10.1029/95JA02858
10. Spencer N. W., Wharton L. E., Niemann H. B., et al. The Dynamics Explorer wind and temperature spectrometer, Space Sci. Instrum., 5, 417—428 (1981).