To the problem of possibility of appearance of preflare current sheets in the chromosphere of active region

1Kryshtal, AN, 2Gerasimenko, SV, 1Voitsekhovska, AD
1Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(3):52–60
https://doi.org/10.15407/knit2012.03.052
Publication Language: Russian
Abstract: 
Conditions of the appearance and development of ionacoustic instability in preflare plasma of a loop structure in solar active region have been investigated. The investigations were conducted in the framework of a semiempirical FAL (Fontenla-Avrett-Loeser) model of solar atmosphere. Subdreicer electric field together with parallel to it magnetic «kilogauss» field are supposed to be present in the region of current loop near its foot-point. It is shown that small-scale ion-acoustic instability with low threshold of excitation in the units of amplitude of subdreicer field can arise in investigated region before the phase of «pre-heating». It has been demonstrated that in the framework of the concept used, reducing of the threshold of excitation of instability is possible only when the degree of non-isothermality of plasma increases.
Keywords: ion-acoustic instability, solar active region, subdreicer field
References: 
1.  Aleksandrov A. F., Bogdankevich L. S., Ruhadze A. A. Fundamentals of plasma electrodynamics, 424 p. (Vyssh. shk., Moscow, 1989) [in Russian].
2.  Reznikova V.Je., Mel'nikov V.F. Gorbikov S.P., Shibasaki K. Distribution of radio brightness along the flare loop.  Plasma physics in the Solar System: Abstracts, Moscow, February 5—8, 2008, P. 17 (ISR RAS, Moscow, 2008) [in Russian].
3.  Reznikova V.Je., Mel'nikov V.F., Shibasaki K. The evolution of the distribution of the radio brightness along the extended flare loops.  Abstracts of Confer. To the memory of M. T. Terehova (Nizhnij Novgorod, May 7, 2007), 17—18  (Nizhnij Novgorod, « Nizhnij Novgorod State University », UNC «Fundamental radiophysics», 2007) [in Russian].
4.  Somov B. V. Solar flares.  The results of science and technology [Itogi nauki i tehniki, VINITI], Astronomy, 34, 78—135 (1987) [in Russian].
5. Somov B. V., Titov V. S., Vernetta A. I. Magnetic reconnection in solar flares, The results of science and technology [Itogi nauki i tehniki, VINITI], Astronomy, 34, 136—237 (1987) [in Russian].
6. Aschwanden M. I. An evaluation of coronal heating model for active regions based on Yohkoh, SOHO and TRACE observations. Astrophys. J., 560 (2), 1035—1043 (2001).
https://doi.org/10.1086/323064
7.  Fontenla J. M., Avrett E. H., Loeser R. Energy balance in solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion.  Astrophys. J., 406 (1), 319—345 (1993).
https://doi.org/10.1086/172443
8. Foukal P., Hinata S. Electric fields in the solar atmosphere: a review.  Solar Phys., 132 (1), 307—330 (1991).
https://doi.org/10.1007/BF00152291
 9. Heyvaerts J., Priest E., Rust D. An emerging flux model for the solar flare phenomenon. Astrophys. J., 216 (1), 213—221 (1977).
https://doi.org/10.1086/155453
10. Kryshtal A. N. Bernstein-wave instability in a collisional plasma with a quasistatic electric field.  J. Plasma Phys., 60, Part 3, 469—484 (1998).
https://doi.org/10.1017/S0022377898007004
11.  Kryshtal A. N., Gerasimenko S. V., Voitsekhovska A. D. «Oblique» Bernstein modes in solar preflare plasma: generation of second harmonics. Adv. Space Res., 5 (4), 791—796 (2012).
https://doi.org/10.1016/j.asr.2011.11.024
12. Kryshtal A. N., Kucherenko V. P. Ion-acoustic instability caused by large-scale electric field in solar active regions. Solar Phys., 165, 139—153 (1996).
https://doi.org/10.1007/BF00149094
13. Machado M. E., Avrett E. H., Vernazza J. E., Noyes R. W. Semiempirical models of chromospheric flare regions.  Astrophys. J., 242 (1), 336—351 (1980).
https://doi.org/10.1086/158467
14. Melnikov V. F., Shibasaki K., Reznikova V. E. Loop-Top Nonthermal Microwave Source in Extended Solar Flaring Loops. Astrophys. J., 580, L.185—L188 (2002).
15. Miller I. A., Cargil P. I., Emslie A. G., et al. Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res., 102 (A7), 14631—14659 (1997).
https://doi.org/10.1029/97JA00976
16. Pines D., Schrieffer J. R. Collective behavior in solid-state plasmas. Phys. Rev., 124 (5), 1387—1400 (1961).
https://doi.org/10.1103/PhysRev.124.1387
17. Solanki S. K. Small-scale solar magnetic fields: an overview. Space Sci. Revs.,  63, 1—183 (1993).
https://doi.org/10.1007/BF00749277

18. Vernazza J. E., Avrett E. H., Loeser R. Structure of solar chromosphere. III. Models EUV brightness components of the quiet Sun. Astrophys. J. Suppl. Ser., 45, 635—725 (1981).
https://doi.org/10.1086/190731