Proposals on the experiments "Janus" on board a lunar polar satellite

1Shkuratov, Yu.G, 2Stankevich, DG, 3Kornienko, Yu.V, 4Kachanov, AS, 4Serbin, VI
1Institute of Astronomy of V. N. Karazin National University of Kharkiv, Kharkiv, Ukraine; Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2Institute of Astronomy of V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
3O.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Science of Ukraine, Kharkiv, Ukraine
4Vernadsky Institute of Geochemistry and Analytical Chemistry. VI Vernadsky, RAS, Moscow, Russia
Kosm. nauka tehnol. 1996, 2 ;(1):24–30
https://doi.org/10.15407/knit1996.01.024
Publication Language: Russian
Abstract: 
Our experience in the development of optical experiments on board a lunar polar satellite is described. The main purpose of the experiments is global remote-sensing investigations of mineralogical, geochemical, and structural properties of the lunar surface in the range 0.2—2.5 microns with a spatial resolution of about 15 km. We propose to carry out the spectrophotometry of the Moon at small phase angles in 14 spectral bands which are most informative from the mineralogical standpoint. Polarization in the UV-range (0.2 microns) is to be measured at phase angles of about 90° to obtain information about regolith microstructure.
Keywords: experiments, lunar polar satellite, polarimetry, spectrophotometry
References: 
Kislyuk V. S., Shkuratov Yu. G., and Yatskiv Ya. S. Exploration of the Moon from space: tasks, potentialities, and prospects of the Ukrainian science and engineering. Kosm. nauka tehnol., 2 (1-2), 3—14 (1996) [in Ukrainian].
https://doi.org/10.15407/knit1996.01.003
Adams J. B. Visible and near-infrared diffuse reflectance spectra of pyroxenes as aplied to remote sensing of solid objects in the solar system. J. Geophys. Res., 79 (32), 4829—4836 (1974).
https://doi.org/10.1029/JB079i032p04829
Charette M. P., McCord T. B., Pieters C., Adams J. B. Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J. Geophys. Res., 79 (11), 1605—1613 (1974).
https://doi.org/10.1029/JB079i011p01605
Davies D. W., Johnson T. V., Matson D. L. Lunar multispectral imaging at 2.26 microns: First result.  Proc. Lunar Sci. Conf. 10th,  P. 1819—1828 (Houston, 1979).
Dollfus A., Bowell E. Polarimetric properties of the lunar surface and interpretation. I. Telescope observation. Astron. and Astrophys., 10, 29—53 (1971).
Dollfus A., Cailleux A., Hua C. T. Remote sensing of Ti02 on planets and satellites. Lunar and Planet. Sci. Conf. (abstr.), 303—305 (LPI/USRA, Houston, 1979).
Dollfus A., Deschamps M. Grain-size determination at the surface of Mars. Icarus, 67 (1), 37—50 (1986).
Johnson J. R., Larson S. M., Singer R. B. Remote sensing of potential lunar resources. I. Near-side compositional properties. J. Geophys. Res., 96, 18861 — 18882 (1991).
https://doi.org/10.1029/91JE02045
Johnson T., Saunders R. S., Matson D. L., Mosher J. A. A Ti02 abundance map for the northern maria. Proc. Lunar Sci. Conf. 8th, 1029—1036 (Houston, 1977).
Lucey P. G., Taylor G. I., Malaret E. Abundance and distribution of iron on the Moon. Science, 268, 1150— 1153 (1995).
https://doi.org/10.1126/science.268.5214.1150
Moroz L. V., Fisenko A. V., Semjonova et al. Optical effects of regolith processes on S asteroids as simulated by laser shots on ordinary chondrite and other mafic materials. Abstracts of papers subm. to 22-nd Russian-American Microsymposium on Planetology, Oct., 1995, Moscow, P. 65—66 (Vernadsky Inst., Moscow, 1995).
Pieters C. Characterization of lunar mare basalt types — II: Spectral classification of fresh mare craters. Proc. Lunar Sei. Conf. 8th, 1037—1048 (Houston, 1977).
Pieters C. Mare basalt types on the front side of the Moon: A summary of spectral reflectance data. Proc. Lunar Sei. Conf. 9th, 2825—2849 (Houston, 1978).
Shkuratov Yu. G., Opanasenko N. V. Polarimetrie and photometric properties of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468—484 (1992).
https://doi.org/10.1016/0019-1035(92)90161-Y
Shkuratov Yu. G., Opanasenko N. V., Kreslavsky M. A. Polarimetrie and photometric properties of the Moon: Telescope observation and laboratory simulation. 1. The negative polarization. Icarus, 95, 283—299 (1992).
https://doi.org/10.1016/0019-1035(92)90044-8
Shkuratov Yu. G., Starukhina L. V., Kreslavsky M. A., et al. Principle of undulatory invariance in photometry of atmo­sphereless celestial bodies. Icarus, 109, 168— 190 (1994).
https://doi.org/10.1006/icar.1994.1084