Analysis of physical models for the effect of the cryogenic camera window on wave front deformation

1Belyaeva, AI, 1Kamyshova, IV
1B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 1997, 3 ;(2):76–85
https://doi.org/10.15407/knit1997.03.076
Publication Language: Russian
Abstract: 
Influence of the window of cryogenic interference set up (CIS) on the light wave front was studied. Main factors which govern wave front distortion by the window were simulated. A method was developed for preliminary theoretical model analysis of these factors. Original method of laboratory control of the window before its installation into the CIS is suggested. The choice of the main distorting factors was determined by two characteristic regimes of CIS operation (vacuum and gas-filled). Comparison of theoretical calculations with experimental data suggests that the models proposed are adequate.
Keywords: space criogenic technologies, space materials
References: 
Amur G. I. Material parameters that determine the surface accuracy of large astronomical mirrors. Optiko Mekhanicheskaia Promyshlennost, No. 3, 4—6 (1983) [in Russian].
Begunov B. N. Geometrical optics, 210 p. (Izdatel'stvo MGU, Moscow, 1966) [in Russian].
Belyaeva A. I., Silaev V. I., Stecenko Yu. E. Continuous flow cryostats for laboratory research, 232 p. (Nauk. dumka, Kiev, 1987) [in Russian].
Belyaeva A. I., Klushin N. P., Konovodchenko E. V., Tsybul'skij V. V. Methods of quality control of optical surfaces: Preprint N 21—88 FTINT AN USSR, 36 p. (Kharkov, 1988) [in Russian].
Belyaeva A. I., Konovodchenko E. V. Low-noise spectral instruments: Preprint N 35—89 FTINT AN USSR, 48 p. (Kharkov, 1989) [in Russian].
Beljaeva A. I., Sirenko V. A. Cryogenic multilayer coatings, 280 p. (Nauk. dumka, Kiev, 1991) [in Russian].
Beyaeva A. I., Kamysheva I. V., Silaev V. I., Stecenko Yu. Experimental stand for optical mirrors cooled by liquid helium. Instruments and Experimental Techniques, No. 6, 186—189 (1993) [in Russian].
Goryankin G. S., Denisov R. N., Ermakov B. A., et al. Cryooptical systems. Opticheskij zhurn., No. 1, 71—74 (1994) [in Russian].
Lyubarskii S. V., Khimich Yu. P. Optical mirrors made of nontraditional materials.   Opticheskij zhurn., No. 1, 76—83 (1994) [in Russian].
Mozberg R. K. Material science, 448 p. (Vyssh. shk., Moscow, 1991) [in Russian].
Nifontova E. G., Shramko Ju. P. The deformation of the wave front in a circular plate with a radial temperature gradient. Optiko-meh. prom-st', No. 8, 16—18 (1986) [in Russian].
Pisarenko G. S., Amel'janovich K. K., Kozub Yu. I., et al. Structural strength of glasses and glass-ceramics, 284 p. (Nauk. dumka, Kiev, 1979) [in Russian].
Pisarenko G. S. Strength of materials [Soprotivlenie materialov], 776 p. (Vysshaya  skola, Kiev, 1986) [in Russian].
Rudicin M. N., Artemov P. Ya., Ljuboshic M. I. Reference book on strength of materials, 630 p. (Vyshejshaja shk., Minsk, 1970) [in Russian].
Shramko Yu. P. Influence of thermal window mode on the deformation of the wave front. Optiko Mekhanicheskaia Promyshlennost, No. 3, 14—17 (1972) [in Russian].
Crowe D. A., Melugin R. R., Miller J. H. Ultra light weight mirror perfomance at 8 degrees Kelvin. Proc. SPIE, 509, 179—190 (1984).
https://doi.org/10.1117/12.944991
Miller J. H., Witteborn F. C., Garland H. J. Cryogenic testing of mirrors for infrared space telescopes. Proc. SPIE, 332, 413—418 (1982).
https://doi.org/10.1117/12.933548 
Morrow H. E., Hamamoto A. S., Ferguson G. K., Jeffrey P. L. Interferometry at cryogenics temperatures. Proc. SPIE, 509, 152—170 (1984).
https://doi.org/10.1117/12.944989 

Petrie W. IRAS telescope cryotest chamber. Proc. SPIE, 509, 110—118 (1984).
https://doi.org/10.1117/12.944984