Controlled levitators for space technologies

1Paslavsky, ES
1Space Research Institute of National Academy of Science of Ukraine and State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2001, 7 ;(2-3):016-026
https://doi.org/10.15407/knit2001.02.016
Publication Language: Russian
Abstract: 
We analyze the possibilities of using existing contactless, spatially distributed force effects on a working body (processed samples of materials) with the aim to equilibrate microgravitation. The electromagnetic induction force effect is shown to be the most promisiny in the levitators intended for special metallurgy. It is capable to provide in the most simple way the necessary functions of contactless containment, automatic control, and stabilization of the working body (sample). The parameters and working regimes of spaceborne levitators were approximately calculated. The main computed parameters of spaceborne levitators are compared to the actual parameters of ground-based levitators.
Keywords: controlled levitators, electromagnetic induction force effect, special metallurgy
References: 
1.  Avduevskii V. S. The main tasks of studying hydromechanics and heat transfer under conditions of weightlessness [Osnovnye zadachi issledovanija gidromehaniki i teploobmena v uslovijah nevesomosti[. Izv. AN SSSR. Ser. fiz., 49 (4), 627—634 (1985) [in Russian].
2.  Braginskii V. B. An experimental test of the theory of relativity [Jeksperimental'naja proverka teorii otnositel'nosti[, 64 p. (Znanie, Moscow, 1977) [in Russian].
3.  Glebovskii V. G., Burtsev V. T. Melting of metals and alloys in suspension [Plavki metallov i splavov vo  vzveshennom  sostojanii[, 176 p. (Metallurgija, Moscow, 1974) [in Russian].
4.  Grishin S. D., Leskov L. V. The industrialization of space: problems and prospects, 352 p. (Nauka, Moscow, 1987) [in Russian].
5.  Gubarev V. F., Ladikov-Roev Yu. P.,  Paslavskii E. S. Investigation of stability at two-frequency confinement of liquid metal [Issledovanie ustojchivosti pri dvuhchastotnom uderzhanii zhidkogo metalla[.  Kibernetika i vychislitel'naja tehnika, Is. 33, 93—96 (1974) [in Russian].
6.  Gubarev V. F., Paslavskii E. S. Suppression of hydromagnetic instabilities in liquid metal by an automatically controlled magnetic field. Magn. Gidrodin., N 4, 45—54 (1973) [in Russian].
7.  Gubarev V. F., Paslavskii E. S. Retention of Large Masses of Molten Metal by an Automatically Controlled Magnetic Field. Magn. Gidrodin., 9 (2), 105—110 (1973) [in Russian].
8.  Doroshchuk V. E. Heat Exchange Crises upon Boiling of Water in Pipes, 119 p. (Énergoizdat, Moscow, 1983) [in Russian].
9.  Kirko I. M., Mikelson A. Je. On the stability of free vaporization of a liquid metal in an alternating magnetic field [Ob ustojchivosti svobodnogo parenija zhidkogo metalla v peremennom magnitnom pole]. Voprosy magnitnoj gidrodinamiki i dinamiki plazmy, Is. 2, 597—604 (1962) [in Russian].
10. Feuerbacher B., Hamacher H., Naumann R. J. (Eds.) Materials Sciences in Space. A Contribution to the Scientific Basis of Space Processing, 478 p. (Mir, Moscow, 1989) [in Russian].
11.  Krivonos Yu. G., Paslavskii E. S., Tkachenko V. A. Analysis of the range of parameters for the stable confinement of liquid conductors by a magnetic field [Analiz oblasti parametrov ustojchivogo uderzhanija zhidkih provodnikov  magnitnym  polem]. In: Upravlenie  ob#ektami  s raspredelennymi parametrami, 47—52 (In-t kibernetiki AN USSR, Kiev, 1987) [in Russian].
12.  Ladikov Yu. P. Stabilization of Processes in Continuous Media, 432 p. (Nauka, Moscow, 1978) [in Russian].
13.  Ladikov Yu. P., Tkachenko V. F. Hydrodynamic instabilities in metallurgical processes, 248 p. (Nauka, Moscow, 1983) [in Russian].
14.  Paslavskii E. S. Stabilization and retention of liquid metals by a magnetic field [Stabilizacija   i   uderzhanie   zhidkih metallov magnitnym polem]. In: Raspredelennoe upravlenie processami v sploshnyh sredah, 43—57 (IK AN Ukrainy, Kiev, 1969) [in Russian].
15.  Paslavskii E. S., Krivonos Yu. G., Samoilenko Yu. I., et al. The method of contactless confinement of liquid conductors [Sposob beskontaktnogo uderzhanija zhidkih provodnikov]: Patent No. 1700774 na izobretenie, zareg. 13.10.1993 (Rospatent) [in Russian].
16.  Paslavskii E. S., Samoilenko Yu. I. The application of a distributed automatic control system for the stabilization of plasma objects [Primenenie raspredelennoj sistemy avtomaticheskogo regulirovanija dlja stabilizacii plazmennyh ob#ektov]. ZhTF, 37 (5), 983—985 (1967) [in Russian].
17. Paslavskii E. S., Tkachenko V. A., Gulyanitskii E. I., et al. Device for non-contact melting and cleaning of electrically conductive materials in suspension [Ustrojstvo dlja beskontaktnoj plavki i ochistki jelektroprovodnyh materialov vo vzveshennom sostojanii]: A. s. 1764189 A1 (SV),
published 1992, Bull. No. 35 [in Russian].
18. Fogel A. A. Induction method of retention of liquid metals in the suspended state, 104 p. (Mashinostroenie, Leningrad, 1979) [in Russian].
19.  Fogel' A. A., Najdenov A. F., Sidorova T. A. Difficulties arising from the increase in the weight of the molten metal held in a state suspended in the electromagnetic field. In: Promyshlennoe primenenie tokov vysokoj chistoty, Is. 5, 249— 290 (Mashinostroenie, Leningrad, 1964) [in Russian].

20.  Okress E. C., Wroughton D. M., Comenetz G., et al. Electromagnetic levitation of solid and molten metals. J. Appl. Phys., 23, 545—552, 1413 (1952).
https://doi.org/10.1063/1.1702249