Modulation of Cosmic Rays Along with Solar and Heliospheric Anomalies

1Mishra, RK, 2Mishra, RA
1Computer and IT Section, Tropical Forest Research Institute, P. O. RFRC, Mandla Road, Jabalpur (M. P.) 482 021, India
2Department of Physics, Govt. Model Science College (Autonomous), Jabalpur (M. P.) 482 001, India
Kosm. nauka tehnol. 2007, 13 ;(6):099-108
https://doi.org/10.15407/knit2007.06.099
Publication Language: English
Abstract: 
A study of the cosmic ray intensity data recorded with the ground-based neutron monitor at Deep River along with the associated interplanetary magnetic field and solar wind plasma parameter data during 1981 –1994 was carried out by means of the Fourier analysis. Many days having abnormally high/low amplitudes for successive number of five or more days as compared to the annual average amplitude of diurnal anisotropy were selected as high/low-amplitude anisotropic wave train events (HAE/LAE). The results clearly indicate that the time of maximum of diurnal variation significantly remains in the 18-hr direction for the majority of the HAE/LAE cases. The phase of enhanced diurnal anisotropy shows a remarkable systematic shift towards later hours as compared to the co-rotational direction for some of the HAE cases, whereas it shows a remarkable systematic shift towards earlier hours for some of the LAE cases as compared to the co-rotational direction.
            The majority of the HAE/LAE events occurred when the disturbance storm time index Dst remains negative only. Significant deviations are seen in the cosmic ray intensity during the passage of interplanetary magnetic clouds for both HAE and LAE events. The high-speed solar wind streams (HSSWS) do not play any significant role in the occurrence of these types of events. The interplanetary disturbances (magnetic clouds) are also effective in producing cosmic ray decreases. The source responsible for these unusual anisotropic wave trains in cosmic rays is proposed.
Keywords: cosmic ray, interplanetary magnetic field, solar wind
References: 
1. Ahluwalia H. S., Riker J. F. Secular changes in the upper cut-off rigidity of the solar diurnal anisotropy of cosmic rays. Planet. and Space Sci., 35, 39 (1987).
https://doi.org/10.1016/0032-0633(87)90142-5
2. Ahluwalia H. S., Riker J. F. Solar wind velocity and daily variation of cosmic rays. 19th Int. Cosmic Ray Conf., Vol. 5, 115 (La Jolla, 1985).
3. Badruddin B., Venkatesan D., Zhu B. Y. Study and effect of magnetic clouds on the transient modulation of cosmic-ray intensity. Solar Phys., 134, 203 (1991).
https://doi.org/10.1007/BF00148748
4. Badruddin B., Yadav R. S., Yadav N. R. Influence of magnetic clouds on cosmic ray intensity variation. Solar Phys., 105, 413 (1986).
https://doi.org/10.1007/BF00172057
5. Balasubrahmanyan V. K. Solar Activity and the 11-Year Modulation of Cosmic Rays. Solar Phys., 7, 39 (1969).
https://doi.org/10.1007/BF00148403
6. Burlaga L. F., Sittler E., Mariani F., Schwenn R. Magnetic loop behind an interplanetary shock — Voyager, Helios, and IMP 8 observations. J. Geophys. Res., 86, 6673 (1981).
https://doi.org/10.1029/JA086iA08p06673
7. Dorman L. I., Kaminer N. S., Kuzmicheva A. E., Mymrina N. V. Effects of high-velocity solar-wind streams in cosmic rays during May 14—25, 1973. Geomag. Aeronomy, 24, 491 (1984).
8. Forbush S. E. Cosmic-Ray Intensity Variations during Two Solar Cycles. J. Geophys. Res., 63, 651 (1958).
https://doi.org/10.1029/JZ063i004p00651
9. Forman M. A., Glesson L. J. Cosmic-ray streaming and anisotropies. Astrophys. and Space Sci., 32, 77 (1975).
https://doi.org/10.1007/BF00646218
10. Hashim A., Bercovitch M. A cosmic ray density gradient perpendicular to the ecliptic plane. Planet. and Space Sci., 20, 791 (1972).
https://doi.org/10.1016/0032-0633(72)90160-2
11. Hashim A., Thambyahpillai T. Large amplitude wave trains in the cosmic ray intensity. Planet. and Space Sci., 17, 1879 (1969).
https://doi.org/10.1016/0032-0633(69)90162-7
12. Hatton C. J. Solar flares and the cosmic ray intensity. Solar Phys., 66, 159 (1980).
https://doi.org/10.1007/BF00150526
13. Iucci N., Parisi M., Storini M., Villoressi G. The behavior of the cosmic-ray equatorial anisotropy inside fast solar-wind streams ejected by coronal holes. Nuovo Cimento, 6C, 145 (1983).
https://doi.org/10.1007/BF02507930
14. Iucci N., Parisi M., Storini M., Villoressi G. Cosmic-Ray Anisotropy during High-Speed Streams Coming from Coronal Holes. 17th Int. Cosmic Ray Conf., Vol. 10, 238 (Paris, 1981).
15. Jadhav D. K., Shrivastava M., Tiwari A. K., Shrivastava P. K. Study of semi-diurnal variation of cosmic rays during days of high amplitude wave trains. 18th Int. Cosmic Ray Conf., Vol. 3, 337 (Bangalore, 1983).
16. Kahler S. W., Reames D. V. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles. J. Geophys. Res., 96, 9419 (1991).
https://doi.org/10.1029/91JA00659
17. Kananen H., Komori H., Tanskanen P., Oksman J. Relation Between Cosmic-Ray Anisotropy and Sector Structure. 17th Int. Cosmic Ray Conf., Vol. 10, 190 (Paris, 1981).
18. Kaushik S. C., Shrivastava P. K. Effects of interplanetary transient disturbances on cosmic ray intensity in relation with solar wind plasma parameters. Bull. Astron. Soc. India, 27, 85 (1999).
19. Klien L. W., Burlaga L. F. Interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 87, 613 (1982).
https://doi.org/10.1029/JA087iA02p00613
20. Kumar S., Chauhan M. L. Unusually low amplitude anisotropic wave train events in cosmic ray intensity. Indian J. Radio and Space Phys., 25, 106 (1996).
21. Kumar S., Chauhan M. L. High amplitude anisotropic wave train events in cosmic ray intensity. Indian J. Radio and Space Phys., 25, 232 (1996).
22. Kumar S., Chauhan M. L., Dubey S. K. Effect of Interplanetary Turbulences Causing High/low Amplitude Anisotropic Wave Trains in CR Intensity. Solar Phys., 176, 403 (1997).
https://doi.org/10.1023/A:1004930112421
23. Marsden R. G., Sanderson T. R., Tranquille C., et al. ISEE 3 observations of low-energy proton bidirectional events and their relation to isolated interplanetary magnetic structures. J. Geophys. Res., 92, 11009 (1987).
24. Mavromichalaki H. In: Astrophys. and Space Sci., 80, 59 (1979).
25. Mavromichalaki H. Application of diffusion-convection model to diurnal anisotropy data. Earth, Moon and Planets, 47, 61 (1989).
https://doi.org/10.1007/BF00056331
26. Mavromichalaki H. Large amplitude wave-trains of cosmic-ray intensity. Astrophys. and Space Sci., 71, 101 (1980).
https://doi.org/10.1007/BF00646911
27. Mavromichalaki H. The large amplitude event observed over the period 22 May to 4 June, 1973. Astrophys. and Space Sci., 68, 137 (1980).
https://doi.org/10.1007/BF00641650
28. Mavromichalaki H. The Relation of the Diurnal Variation to the Solar Rotation and to the Interplanetary Sector Boundaries. 17th Int. Cosmic Ray Conf., Vol. 10, 183 (Paris, 1981).
29. Mavromichalaki H., Petropoulos B. Time-lag of cosmic-ray intensity. Astrophys. and Space Sci., 106, 61 (1984).
https://doi.org/10.1007/BF00653915
30. Moraal H. Observations of the eleven-year cosmic-ray modulation cycle. Space Sci. Rev., 19, 845 (1976).
https://doi.org/10.1007/BF00173707
31. Munakata Y., Mori S., Ryu J. Y., et al. High-Speed Solar Wind Stream and Modulation of Cosmic Ray Anisotropy. 20th Int. Cosmic Ray Conf., Vol. 4, 39 (Moscow, 1987).
32. Munakata Y., Mori S., Venkatesan D. Rigidity Dependence of Solar Diurnal Anisotropy Related to High Speed Solar Wind Stream. 21st Int. Cosmic Ray Conf., Vol. 6, 341 (Adelaide, 1990).
33. Nagashima K., Morishita I. Long term modulation of cosmic rays and inferable electromagnetic state in solar modulating region. Planet. and Space Sci., 28, 177 (1980).
https://doi.org/10.1016/0032-0633(80)90094-X
34. Nagashima K., Morishita I. Twenty-two year modulation of cosmic rays associated with polarity reversal of polar magnetic field of the Sun. Planet. and Space Sci., 28, 195 (1980).
35. Parker E. N. The Magnetic Field of the Galaxy. 22nd Int. Cosmic Ray Conf., Vol. 5, 35 (Ireland, 1991).
36. Pomerantz M. A., Duggal S. P. The Sun and Cosmic Rays. Rev. Geophys. Space Phys., 12, 343 (1974).
https://doi.org/10.1029/RG012i003p00343
37. Rao U. R. Solar Modulation of Galactic Cosmic Radiation. Space Sci. Rev., 12, 719 (1972).
https://doi.org/10.1007/BF00173071
38. Rao U. R., Ananth A. G., Agrawal S. P. Characteristics of quiet as well as enhanced diurnal anisotropy of cosmic radiation. Planet. and Space Sci., 20, 1799 (1972).
https://doi.org/10.1016/0032-0633(72)90114-6
39. Sanderson T. R., Beeck J., Marsden R. G., et al. In: 21st Int. Cosmic ray Conf., Vol. 6, 251 (Adelaide, 1990).
40. Sanderson T. R., Beeck J., Marsden R. G., et al. In: 21st Int. Cosmic ray Conf., Vol. 6, 255 (Adelaide, 1990).
41. Venkatesan D., Badruddin B. Cosmic-ray intensity variations in the 3-dimensional heliosphere. Space Sci. Rev., 52, 121 (1990).
https://doi.org/10.1007/BF00704241
42. Xanthakis J. In: Physics of the Solar Corona, Ed. by C. Macris. (Reidel, Dordrecht, 1971).
43. Xanthakis J., Mavromichalaki H., Petropoulos B. Cosmic-ray intensity related to solar and terrestrial activity indices in solar cycle No. 20. Astrophys. and Space Sci., 74, 303 (1981).
https://doi.org/10.1007/BF00656441
44. Yadav R. S., Yadav N. R., Badruddin B. Diurnal anisotropy of cosmic ray intensity during interplanetary magnetic clouds at 1 AU. In: 20th Int. Cosmic Ray Conf., Vol. 4, 83 (Moscow, 1987).

45. Zhang G., Burlaga L. F. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases. J. Geophys. Res., 93, 2511 (1988).
https://doi.org/10.1029/JA093iA04p02511