Comparison of total ozone content distribution over northern and southern high latitudes
Heading:
1Lozitsky, VV 1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
Kosm. nauka tehnol. 2009, 15 ;(3):56-61 |
https://doi.org/10.15407/knit2009.03.056 |
Publication Language: Ukrainian |
Abstract: Our results of comparative analysis of quasi-stationary wave (QSW) influence on total ozone content (TOC) distribution over 60N and 60S latitudes are presented. Version 8 of TOMS total ozone satellite data for 1979–2003 years was used for visualization of the variations of the longitudinal ozone distribution. The 3-month averaging for each year was used to obtain QSW spatial distribution and their spectral components. Long-term changes of QSW characteristics are compared for Arctic and Antarctic regions. The quasi-stationary planetary wave 1 is prevailing in the Southern hemisphere (SH) during the spring period, while in Northern hemisphere (NH) the wave 1 is also predominating, although in separate years the wave 2 dominates. The maximal TOC disturbances by planetary waves are observed in the winter–spring period both in NH (January–March) and SH (August–October). During the Antarctic ozone hole development (from the mid-1980s and so far) QSW position at 60S changed in the way of eastward rotation, whereas in the latitude 60N only position of QSW maximum slightly moved, also eastward. At means of yearly QSW variations, both hemispheres show strong variability in positions and amplitudes.
|
Keywords: latitudes distribution, ozone, planetary waves |
References:
1. Castanheira J. M., et. al. Does the troposphere respond to polar stratospheric vortex strengthening by increasing planetary wave generation? Geophys. Res. Abstrs., 10, EGU2008-A-11255 (2008).
2. Grytsai A., Evtushevsky O., Agapitov O., et al. Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys., 25 (2), 361–374 (2007).
https://doi.org/10.5194/angeo-25-361-2007
https://doi.org/10.5194/angeo-25-361-2007
3. Grytsai A., Evtushevsky O., Milinevsky G. Anomalous quasi-stationary planetary waves over the Antarctic region in 1988 and 2002. Ann. Geophys., 26 (5), 1101–1108 (2008).
https://doi.org/10.5194/angeo-26-1101-2008
https://doi.org/10.5194/angeo-26-1101-2008
4. Grytsai A., Grytsai Z., Evtushevsky A., Milinevsky G. Interannual variability of planetary waves in the ozone layer at 65°S. IJRS, 26 (16), 3377– 3387 (2005).
5. Grytsai A., Grytsai Z., Evtushevsky A., et al. Zonal wave numbers 1–5 in planetary waves from the TOMS total ozone at 65°S. Ann. Geophys., 23, 1565– 1573 (2005).
https://doi.org/10.5194/angeo-23-1565-2005
https://doi.org/10.5194/angeo-23-1565-2005
6. Li Q., Graf H.-F., Giorgetta M. A. Stationary planetary wave propagation in Northern Hemisphere winter — climatological analysis of the refractive index. Atmos. Chem. Phys. Discuss., 6, 9033– 9067 (2006).
https://doi.org/10.5194/acpd-6-9033-2006
https://doi.org/10.5194/acpd-6-9033-2006
7. McCormack J., Miller A., Nagatani R., Fortuin F. Inter-annual variability in the spatial distribution of extratropical total ozone. Geophys. Res. Lett., 25 (12), 2153–2156 (1998).
https://doi.org/10.1029/98GL01548
https://doi.org/10.1029/98GL01548
8. Murry L. S., Callaghan P. F. Influence of planetary wave activity on the stratospheric final warming and spring ozone. J. Geophys. Res., 112 (2007).
9. Nikulin G., Karpechko A. The mean meridional circulation and midlatitude ozone buildup. Atmos. Chem. Phys., 5, 3159–3172 (2005).
https://doi.org/10.5194/acp-5-3159-2005
https://doi.org/10.5194/acp-5-3159-2005
10. Niu X., Frederick J., Stein L., Tiao G. Trends in column ozone based on TOMS data — Dependence on month, latitude and longitude. J. Geophys. Res., 97D (13), 14,661–14,669 (1992).
https://doi.org/10.1029/92JD01392
https://doi.org/10.1029/92JD01392
11. Wu M. F., Geller M. A., Nash E. R., Gelman M. E. Global atmospheric circulation statistics — four year averages. NASA Technical Memorandum 100690 (1987).