Power losses for solar arrays of a spacecraft in the Earth’s polar ionosphere and magnetosphere
Heading:
1Shuvalov, VA, 1Pismennyi, NI, 2Kochubey, GS, 3Nosikov, SV 1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine 2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine 3Institute of Technical Mechanics of the NAS of Ukraine and SSA of Ukraine, Dnipropetrovsk, Ukraine |
Kosm. nauka tehnol. 2011, 17 ;(3):05-15 |
https://doi.org/10.15407/knit2011.03.005 |
Publication Language: Russian |
Abstract: We developed a calculating-experimental procedure for the forecast of electrical power losses of spacecraft silicon solar arrays during long-term operation in circular orbits within the Earth’s polar ionosphere and magnetosphere. Power losses of solar arrays due to the effect of individual factors of the environment around a spacecraft are determined. It is shown that integral values for power losses of solar arrays, with consideration for the effect of individual factors of the environment around a spacecraft, agree with satellite measurement results.
|
Keywords: magnetosphere, polar ionosphere, solar arrays, spacecraft environment |
References:
1. Akishin A.I. Electric discharge damage of spacecrafts solar batteries in magnetospheric and ionospheric plasma. Physics and Chemistry of Materials Treatment, No. 2, 43—49 (1995) [in Russian].
2. Akishin A. I., Tyutrin Yu. I., Tseplyaev L. I. Electric discharge mechanism of solar cell damaging under electron irradiation. Physics and Chemistry of Materials Treatment, No. 6, 56—59 (1996) [in Russian].
3. Antonov V. M., Ponomarenko A. G. Laboratory Studies of Effects of Spacecraft Electrification, 115 p. (Nauka, Novosibirsk, 1992) [In Russian].
4. Babkin G.V., Gostishchev E.A., Smekalin L.F., et al. Conditions of Low-Voltage Electrical Arc Origination Between Solar battery Elements during Spacecraft Radiation Electrification. Kosmonavtika i raketostroenie, No. 1 (30), 75—83 (2003) [in Russian].
5. Ermolenko A. F. On testing the hypothesis of linear summation of damages. Tr. Moskov. jenergeticheskogo in-ta, Is. 185, 52—54 (1974) [in Russian].
6. Kaminsky M. Atomic and Ionic Collisions at the Metal Surface, 507 p. (Mir, Moscow, 1967) [in Russian].
7. Kreinin L. B., Grigorieva G. M. Solar Cells in the Conditions of Impact of Cosmic Radiation. Itogi nauki i tehniki. VINITI. Issledovanie kosmicheskogo prostranstva, Is. 3, 128 p. (1979) [in Russian].
8. Kulikov I. A., Kuprij A. A., Yurlova G. A. Experimental studies of space factors effects on durability of graphite/epoxy composites. 4. Regularities of accumulation of different type corrosion products from metallized graphite/epoxy composite. Fizika i khimiya obrabotki materialov, No. 4, 38—48 (1993) [in Russian].
9. Letin V. A. Functioning solar arrays in space. In: Space Model, Vol. 2, 561—594 (Vol. 1-2; Vol. 2) (Knizhny Dom Universitet, Moscow, 2007) [in Russian].
10. Letin V. A., Zayavlin V. R., Eremin P. A. Combined Influence of Space Factors in Thermovacuum Tests of Solar Batteries. Kosmicheskie Issledovaniia, 37 (3), 329—331 (1999) [in Russian].
11. McDaniel E. W. Collision Phenomena in Ionized Gases, 832 p. (Mir, Moscow, 1967) [in Russian].
12. Vernov S. N. (Ed.) A Model of Outer Space (Cosmos Model-82), vol. 2, 770 p. (Vol. 1-2; Vol. 2) (Mosk. Gos. Univ., Moscow, 1983) [in Russian].
13. Pereverzev E. S. The models of damage accumulation in durability problems, 360 p. (Nauk.dumka, Kiev, 1995) [in Russian].
14. Prisniakov V. F. On the degradation of solar batteries aboard space vehicles. Kosm. nauka tehnol., 2 (1-2), 73—81 (1996) [in Russian].
15. Behrisch R. (Ed.) Sputtering by Particle Bombardment, Vol. 2, 488 p. (Vol. 1-2; Vol. 2) (Mir, Moscow, 1986) [in Russian].
16. Rauschenbach H. S. Solar cell array design handbook: the principles and technology of photovoltaic energy conversion, 360 p. (Jenergoatomizdat, Moscow, 1983) [in Russian].
17. Shuvalov V. A., Kochubei G. S., Gubin V. V., Tokmak N. A. Power Losses of Solar Arrays under the Action of an Environment in a Geosynchronous Orbit. Kosmicheskie Issledovaniia, 43 (4), 274—282 (2005) [in Russian].
https://doi.org/10.1007/s10604-005-0044-2
https://doi.org/10.1007/s10604-005-0044-2
18. Shuvalov V. A., Kochubei G. S., Priimak A. I., et al. Changes of properties of the materials of spacecraft solar arrays under the action of atomic oxygen. Kosmicheskie Issledovaniia, 45 (4), 294—304 (2007) [in Russian].
https://doi.org/10.1134/s001095250704003x
https://doi.org/10.1134/s001095250704003x
19. Shuvalov V. A., Priimak A. I., Bandel K. A., Kochubei G. S. Charge transfer by high-energy electrons onto the leeward surfaces of a solid in a supersonic rarefied plasma flow. Prikladnaja mehanika i tehnicheskaja fizika, 49 (1), 13—23 (2008) [in Russian].
20. Shuvalov V. A., Priimak A. I., Gubin V. V. Radiative Electrification of Spacecraft Construction Elements: Physical Modeling of Charge Accumulation and Neutralization. Kosmicheskie Issledovaniia, 39 (1), 18—26 (2001) [in Russian].
21. Shuvalov V. A., Priimak A. I., Gubin V. V., et al. A gas-discharge plasma source for the modification of the potential on the surface of an insulator. Pribory i Tekhnika Eksperimenta, 45 (2), 141—144 (2002) [in Russian].
22. Yagushkin N. I., Grafodatskii O. S., Islyaev Sh. N., et al. Radiation and Electric Phenomena in Dielectric Materials of Spacecraft at Electrifications. Issled. Geomagn. Aeron. Fiz. Solntsa, Is. 86, 131 — 168 (1989) [in Russian].
23. Yagushkin N. I., Sergeev A. I., and Gostishchev E. A. Study of radiation-electric processes in dielectrics irradiated by electrons with energy up to 100 keV. In: Space Model [Model’ kosmosa], Vol. 2, 341—360 (Vol. 1-2; Vol. 2) (Knizhny Dom Universitet, Moscow, 2007) [in Russian].
24. Anderson P. C. Survey of spacecraft charging events of the DMSP spacecraft in LEO. Proc. 7-th Spacecraft Charging Technology Conf., 331— 336 (ESA Sp-476, 2001).
25. Anderson P. C., Koons H. C. Spacecraft charging anomaly a low-altitude satellite in a Aurora. J. Spacecraft and Rockets, 33 (5), 734—738 (1996).
https://doi.org/10.2514/3.26828
https://doi.org/10.2514/3.26828
26. Dever J. A., Bruckner E. J., Scheiman D. A. Contamination of space environmental effects on solar cells and thermal control surfaces. J. Spacecraft and Rockets, 32 (5), 832—838 (1995).
https://doi.org/10.2514/3.26695
https://doi.org/10.2514/3.26695
27. ECSS-E-10-04A. Space environment, ESA-ESTEC, 219 p. (Noordwijk, Netherlands, 2000).
28. Goldhammer J. G. Irradiation of solar cell candidates for the ATS–F solar cell experiment. 9-th IEEE Photovolt. Specialists Conf., 316—328 (N.Y., 1972).
29. Gussenhoven M. A., Hardy D. A., Rich F. High-level spacecraft charging in the low-altitude polar and auroral environment. J. Geophys. Res., 90A (11), 11009—11023 (1985).
https://doi.org/10.1029/JA090iA11p11009
https://doi.org/10.1029/JA090iA11p11009
30. Harris J. D, Anglin E. J., Hepp A. F., Balley S. G. Space environmental testing of dye–sensitized cells. Proc. 6-th European Space Power Conf., N ESA SP–502, 702—711 (Porto, Portugal, 2002).
31. Jalinat A., Pcart G. Samson P. In-orbit behaviour of SPOT 1, 2 and 3 solar arrays. Proc. of the Fifth European Space Power Conf., N ESA SP– 416, 627—631 (Tarragona, Spain, 1998).
32. Jones P. A., White S. F. , Harvey T. Y., Smith B. S. A high specific power solar array for low mid-power spacecraft. SPRAT XII: Proc. of the space photovoltaic research and technology conf., N NASA CP-3210, 177—187 (NASA, 1992).
33. Koontz S., King G., Dunnet A., et al. Intelsat solar array coupon atomic oxigen fligt experiment. J. Spacecraft and Rockets, 31 (3), 475—481 (1994).
https://doi.org/10.2514/3.26463
https://doi.org/10.2514/3.26463
34. Leet S. J., Fogdal L. B., Willkinson M. C. Thermooptical property degradation of irradiated spacecraft surfaces. J. Spacecraft and Rockets, 32 (5), 832—838 (1995).
https://doi.org/10.2514/3.26692
https://doi.org/10.2514/3.26692
35. Letin V. A. Optical radiation and thermal cycling losses of power solar array returned orbital station «Mir» after 10,5 years of operation. Proc. 6-th European Space Power Conf., N SP–502, 713—718 (Porto, Portugal, 2002).
36. Letin V. A., Bordina N. M., Zayavlin V. R., Chernichkova T. S. An experimental simulation of space environment effects on the solar cell battery. Problems of spacecraft environment interaction: Int. Conf., 110—112 (Irkutsk, 1992).
37. Pippin H. G., Wol L. B., Loebs V. A., Bohnhoff-Hlavacek G. Contamination effects on the passive optical sample assembly experiments. J. Spacecraft and Rockets, 37 (5), 567—572 (2000).
https://doi.org/10.2514/2.3628
https://doi.org/10.2514/2.3628
38. Remanry S., Serene F., Nabarra R. The THERME Experiment: in-flight measurement of the ageing of thermal controlcoating. Proc. 9-th International Symp. on Materials in a space environment, 585—587 (Noordwijk: ESTEC, 2003).
39. Roussel J. F., Alet I., Fay D., Preira A. Effect of space environment on spacecraft surfaces in sun-synchronous orbits. J. Spacecraft and Rockets, 41 (5) 812—820 (2004).
https://doi.org/10.2514/1.1211
https://doi.org/10.2514/1.1211
40. Santoni F., Piergentili F. Analysis of the Unisat-3 solar array in-orbit performance. J. Spacecraft and Rockets, 45 (1), 142—148 (2008).
https://doi.org/10.2514/1.32392
https://doi.org/10.2514/1.32392
41. Soldi J. D., Yasting D. E., Hardy D., et al. Flight data analysis for the photovoltaic array space power plus diagnostics experiment. J. Spacecraft and Rockets, 34 (1), 92—103 (1997).
https://doi.org/10.2514/2.3177
https://doi.org/10.2514/2.3177
42. Tarasov V. N., Babkin G. V., Morosov E. P. Electrostatic behaviour of solar-cell batteries under condition of radiation electrization. Problems of spacecraft environment interaction: Int. Conf., 58—59 (Irkutsk, 1992).
43. Toyoda K., Matsumoto T., Cho M., et al. Power reduction of solar arrays by arcing under simulated geosynchronous orbit environment. J. Spacecraft and Rockets, 41 (5), 854—861 (2004).
https://doi.org/10.2514/1.13103
https://doi.org/10.2514/1.13103
44. Tribble A. C. Revised estimates of photochemically deposited contamination on the GPS satellites. J. Spacecraft and Rockets, 35 (1), 114—116 (1998).
https://doi.org/10.2514/3.27010
https://doi.org/10.2514/3.27010
45. Tribble A. C., Boyadjian B., Davis J. Contamination control engineering design guidelines for aerospace community. NASA Contractor Report, N 4740, 126 p. (1996).
https://doi.org/10.2514/6.1996-4375
https://doi.org/10.2514/6.1996-4375
46. Upschulte B. L., Marinelli W. J., Carleton K. L., et al. Arcing of negatively biased solar cells in a plasma environment. J. Spacecraft and Rockets, 31 (3), 493—507 (1994).
https://doi.org/10.2514/3.26466
https://doi.org/10.2514/3.26466
47. Wood B. E., Hall D. F., Lesmo J. C. Midcourse space experiment satellite flight measurements of contaminants on quartz crystal microbalances. J. Spacecraft and Rockets, 35 (4), 533—538 (1998).
https://doi.org/10.2514/2.3363