Experimental substantiation of effectiveness of conception of artificial mini-magnetosphere as a means of spacecraft motion controlling in the Earth ionosphere
Heading:
1Shuvalov, VA, 1Kuchugurnyi, Yu.P 1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine |
Space Sci.&Technol. 2018, 24 ;(2):43-46 |
https://doi.org/10.15407/knit2018.02.043 |
Publication Language: Russian |
Abstract: We present briefly the project of space experiment “Spacecraft Mini-magnetosphere”.
Concept of this experiment is proposed to substantiate the effectiveness of using an artificial mini-magnetosphere near the surface of a spacecraft as a means of controlling its motion in the Earth’s ionosphere due to the Lorentz force arising in the interaction in “spacecraft magnetic field - ionospheric plasma” system. A scheme with mini-magnetosphere can be used in space debris removal procedure by lowering orbits of debris parts causing them to get burnt in dense layers of the Earth's atmosphere.
|
Keywords: ionospheric plasma, Lorentz force, magnetic field, mini-magnetosphere, physical modeling, spacecraft movement control |
References:
1. Tokmak N. A., Kuchugurnyi Yu. P., Kochubei, G. S., Tsokur A. G. (2017). Mini-magnitosfera kak sredstvo upravleniya kosmicheskim apparatom v ionosphere Zemli [Mini-magnetosphere as a means of controlling a spacecraft motion in the Earth`s ionosphere]. Abstracts from 17 Ukrainska konferentsiya z kosmichnyh doslidzhen (21— 25 serpnya 2017 roku, Odesa) – 17 th Ukrainan conference on space research. (p. 223). Kiev: Akademperiodyka NAS Ukraine [In Russian].
2. Bombardelli C., Pelaez, J. (2011). Ion beam shepherd for contactless space debris removal. J. Guidance and Dynamics, 34 (3), 916—920.
https://doi.org/10.2514/1.51832
https://doi.org/10.2514/1.51832
3. Kitamura S., Hayakawa Y., Kawamoto S. (2014). A reorbiter for large GEO debris objects using ion beam irradiation. Acta Astronautica, 94 (2), 725—735.
https://doi.org/10.1016/j.actaastro.2013.07.037
https://doi.org/10.1016/j.actaastro.2013.07.037
4. Nishida H., Funaki I. (2012). Analysis of thrust characteristics of a magnetic sail in magnetized solar wind. J. Propulsion and Power, 28 (3), 636—641.
https://doi.org/10.2514/1.B34260
https://doi.org/10.2514/1.B34260
5. Shuvalov V. A., Gorev N. B., Tokmak N. A., Kochubei, G. S. (2017). Physical simulation of the long-term dynamic action of a plasma beam on a space debris object. Acta Astronautica, 132, 97—102.
https://doi.org/10.1016/j.actaastro.2016.11.039
https://doi.org/10.1016/j.actaastro.2016.11.039
6. Shuvalov V. A., Priimak A. I., Bandel K. A., Kochubei G. S., Tokmak N. A. (2011). Heat exchange and deceleration of a magnetized body in a rarefied plasma flow. J. Applied Mechanics and Technical Physics, 52 (1), 1—8.
https://doi.org/10.1134/S0021894411010019
https://doi.org/10.1134/S0021894411010019
7. Shuvalov V. A., Tokmak N. A., Pismennyi N. I., Kochubei G. S. (2015). Control of the dynamic interaction of a “magnetized” sphere with a hypersonic flow of rarefied plasma. High Temperature, 53 (4), 463—469.
https://doi.org/10.1134/S0018151X15030177
https://doi.org/10.1134/S0018151X15030177