Deceleration of an artificially magnetized spacecraft in the ionospheric plasma

1Shuvalov, VA, 2Simanov, VG, 3Horolsky, PG, 1Kulagin, SN
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
3Oles Honchar National University of Dnipro, Dnipro, Ukraine
Space Sci. & Technol. 2020, 26 ;(2):59-71
Publication Language: Russian
The physical modeling of the dynamic interaction of a “magnetized” body with a hypersonic rarefied plasma flow in the Earth’s ionosphere gives the dependences of the drag force on the ratio of magnetic pressure to the velocity head, on the angle between vectors of the plasma flow velocity (spacecraft flight) and induction of own magnetic field, as well as on the ratio of the characteristic size of a disturbed zone in the flow around the “magnetized” body to its linear size. The dependence of the electromagnetic force braking a spacecraft at an altitude of ~ 700 km on the induction of its magnetic field is determined. For the altitude range of 250...1000 km in the Earth’s ionosphere, it is shown that the electromagnetic force generated by the interaction of the spacecraft’s magnetic field (induction ≥ 0.8 T) with the surrounding plasma is comparable to an impulse injected by the plasma jet of the special spacecraft. Such vehicles are intended for forced “active” cleaning of near-Earth space from large space debris objects with a linear size of ≥0.5 m (fuel tanks, last stages of launch vehicles, cowls, used spacecraft, etc.).
          The cleaning procedure involves braking of space debris objects with a plasma jet, shifting them to lower orbits, and then removing by combustion in dense layers of the Earth’s atmosphere. With the induction of spacecraft’s magnetic field of higher than 0.8 T, the electromagnetic force significantly, by more than three orders of magnitude, exceeds the deceleration force. The latter is due to the action of the neutral component of the partially ionized ionospheric plasma at altitudes ≥ 700 km. The use of electromagnetic force generated in the system “magnetized spacecraft —  ionospheric plasma” can be an alternative to the technologies of “active” (plasma jets of special spacecraft) and “passive” (inflatable spacecraft constructions) cleaning of near-earth space from the space debris objects at altitudes of 250...1000 km.
Keywords: braking, electromagnetic force, ionospheric plasma, magnetic field, space debris, spacecraft
1. Galkin V. S. (1965). Determination of moments and forces acting on rotating bodies in a free molecular flow and in a light flow. Inzhenerny zhurnal, 5 (5), 954—958 [in Russian].
2. Gurevich A. V., Shvartsburg A. B. (1973). Nunlinear theory of radio wave propagation in the ionosphere. Moscow: Nauka.
3. Podgorny I. M., Sagdeev R. Z. (1970). Physics of interplanetary plasma and laboratory experiments. Sov. Phys. Uspekhi, 12, 445—462 [in Russian].
4. Shuvalov V. A. (1995). Modelling of the interaction the bodies with the ionosphere. Kuiv: Naukova dumka [in Russian].
5. Bityurin V. A., Vatazhin A. B., Gus’kov O. V., Kopchenov V. I. (2004). Hypersonic flow past the spherical nose of a body in the presence of a magnetic field. Fluid Dynamics, 39 (4), 657—666.
6. Bombardelli C., Peláez J. (2011). Ion beam shepherd for contactless space debris removal. J. Guidance and Dynamics, 34 (3), 916—920.
7. Draft International Standard. Space environment (natural and artificial) — Earth upper atmosphere. ISO 14222:2013(Е).
8. ECSS-E-10-04 A. (2000). Space engineering: Space environment. — 2000-01-21. Noordwijk: ESA Publications Division, 196.
9. Fujino T., Shimosowa Y. (2016). Numerical study of magnetohydrodynamic flow control along superorbital reentry trajectories. J. Spacecraft and Rockets, 53 (3), 528—537.
10. Fujita K. (2004). Particle simulation of moderately — sized magnetic sail. J. Space Technology Science, 20 (2), 26—31.
11. Funaki I., Kojima H., Yamakawa Y. (2007). Laboratory experiment of plasma flow around magnetic sail. Astrophys. Space Sci., 307 (1-3), 63—68.
12. Grossman G., Williams G. (1990). Inflatable concentrators for solar propulsion and dynamic space power. J. Solar Energy Engineering, 112 (11), 229—236.
13. Gunko J. F., Kurbatova G. I., Filippov B. V. (1973). Methodic of calculation aerodynamic coefficients for bodies with magnetic fields in rarefied plasma. Rarefied gas aerodynamic, No. 6, 54—66.
14. Halbach K. (1985). Application of permanent magnet in accelerators and electron storage ring. J. Applied Phys., 57, 3605—3608.
15. Inamori T., Kawashima R., Saisutjarit P., Sako N., et. al. (2015). Magnetic plasma deorbit system for nano-and microsatellites using magnetic torquer interference with space plasma in low Earth orbit. Acta Astronautica, 112, 192—199.
16. Katsurayama H., Kawamura M., Matsuda A., Abe T. (2008). Kinetic and continuum simulation of electromagnetic control of a simulated reentry flow. J. Spacecraft and Rockets, 45 (2), 248—254.
17. Kawamura H., Matsuda A., Katsurayama H., Otsu H., et. al. (2009). Experiment on drag enhancement for a blunt body with electrodynamics heat shield. J. Spacecraft and Rockets, 46 (6), 1171—1177.
18. Kawashima R., Bak J., Matsurawa S., Inamori T. (2018). Particle simulation of plasma drag force generation in the magnetic plasma deorbit. J. Spacecraft and Rockets, 55 (5), 1074—1082.
19. Kitamura S., Hayakawa Y., Kawamoto S. (2014). A reorbiter for GEO large debris objects using ion beam irradiation. Acta Astronautica, 94 (2), 725—735.
20. Mark C. P., Kamath S. (2019). Review of active space debris removal methods. Space Policy, 47, 194—206.
21. Mehta P. M., Walker A., McLaughlin C. A., Koller J. (2014). Comparing physical drag coefficients computed using different gas-surface interaction models. J. Spacecraft and Rockets, 51 (3), 873—883.
22. Merino M., Ahedo E., Bombardelli C., Urrutxua H., et. al. (2011). Hypersonic plasma plume expansion in space. Proc. IEPC (Intern. Electric Propulsion Conf.), 086.
23. Mitchner M., Kruger Ch. (1973). Partially ionized gases. New York: Wiley.
24. Moe K., Moe M. M., Wallace S. D. (1998). Improved satellite drag coefficient calculation from orbital measurements of energy accommodation. J. Spacecraft and Rockets, 35(3), 266—272.
25. Nishida A. (1978). Geomagnetic diagnosis of the magnetosphere. New-York — Heidelberg — Berlin: Springer-Verlag.
26. Nishida H., Funaki I. (2012). Analysis of thrust characteristics of a magnetic sail in magnetized solar wind. J. Propulsion and Power, 28(3), 636—641.
27. Nishida H., Ogawa H., Funaki I., Fujita K., Yamakawa H. (2006). Two-dimensional magnetohydrodynamic simulation of a magnetic sail. J. Spacecraft and Rockets, 43 (3), 667—672.
28. Parks D. E., Katz I. (2003). Asymptotic magnetic field expantion in mini-magnetospheric plasma propulsion. J. Spacecraft and Rockets, 40 (4), 597—598.
29. Shuvalov V. A., Gorev N. A., Tokmak N. A., Kochubei G. S. (2017). Physical simulation of the long-term dynamic action of a plasma beam on a space debris object. Acta Astrnautica, 132, 97—102.
30. Shuvalov V. A., Pis’mennyi N. I., Lazuchenkov D. N., Kochubey G. S. (2013). Probe diagnostics of laboratory and ionospheric rarefied plasma flows. Instruments and experimental techniques, 56 (4), 459—467.
31. Shuvalov V. A., Gorev N. B., Tokmak N. A., Pis’mennyi N. I., Kochubei G. S. (2018). Control of the drag on a spacecraft in the Earth’s ionosphere using the spacecraft’s magnetic field. Acta Astronautica, 151, 717—725.
32. Toivanen P. K., Janhunen P., Koskinen H. E. J. (2004). Magnetospheric propulsion (eMPii). ESTEC/Contractor N16361/02/NL/LvH. Final report, 1.3. 78 p.
33. Zubrin P. M., Andrews D. G. (1991). Magnetic sail and interplanetary travel. J. Spacecraft and Rockets, 28 (2), 197—203.