A wide-angle Stokes polarimeter for the BOOTES network of telescopes. Optical and mechanical design
1Syniavskyi, II, 2Castro-Tirado, A, 1Ivanov, Yu.S, 3Guziy, SS, 4Oberemok, EA 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 2Institute of Astrophysics of Andalusia, Granada, Spain 3Institute of Astrophysics of Andalusia, Granada, Spain; National University "Kyiv-Mohyla Academy", Kyiv, Ukraine 4Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
Space Sci. & Technol. 2024, 30 ;(2):93-108 |
https://doi.org/10.15407/knit2024.02.093 |
Publication Language: English |
Abstract: We describe the imaging polarimeter EDIPO (Efficient & Dedicated wide-field Imaging Polarimeter) as a part of astronomical telescopes of the BOOTES (Burst Observer and Optical Transient Exploring System) network that is intended for the study of polarization features of the rapid processes of the gamma-ray bursts afterglow (Gamma-ray burst — GRB). The design of the polarimeter allows one to be installed on the network telescopes with a diameter of the main mirror up to 1.4 m. The EDIPO is designed to analyze the polarization parameters of linearly polarized light in the spectral range of 450—1000 nm. The polarization analyzer of the polarimeter does not contain moving elements and allows measurements of Stokes parameters I, Q, U of light in a 30'× 30' field of view simultaneously for one spectral band of the working spectral range. The optical part of the polarimeter was assembled and tested on a telescope with a mirror diameter of 1.2 m. The calibration approaches for the polarimeter-telescope system are considered.
|
Keywords: polarization, Stokes-polarimeter, telescope |
1. Afanasiev V. L. Shablovinskaya E. S., Uklein R. I., Malygin E. A. (2021). Stokes-Polarimeter for 1-m Telescope. Astrophys. Bull., 76(1), 102-108.
https://doi.org/10.1134/S1990341321010028
2. Angel J. R. P., Stockman H. S. (1980). Optical and infrared polarization of active extragalactic objects. Annu. Rev. Astron.and Astrophys., 18, 321-361.
https://doi.org/10.1146/annurev.aa.18.090180.001541
3. Bauer M., Grießbach D., Hermerschmidt A., Krüger S., Scheele M., Schischmanow A. (2008). Geometrical camera calibration with diffractive optical elements. Opt. Express, 16, 20241-20248.
https://doi.org/10.1364/OE.16.020241
4. Bret-Dibat T., Andre Y., Laherrere J. M. (1995). Preflight calibration of the POLDER instrument. Proc. SPIE, 2553, 218-231.
https://doi.org/10.1117/12.221357
5. Cairns B., Russell E. E., Travis L. D. (1999). Research Scanning Polarimeter: calibration and ground-based measurements. Proc. SPIE, 3754, 186-196.
https://doi.org/10.1117/12.366329
6. C astro-Tirado A. J., Cunniffe R., de Ugarte Postigo A., Jelínek M., Vitek S., Kubánek P., Gorosabel J., Castillo Carrión S., Mateo Sanguino T. J., Riva A., Conconi P., di Caprio V., Zerbi F., Amado P., Cárdenas C., Claret A., Guziy S., Martín-Ruiz S., Sánchez M. A., García Teodoro P., Castro Cerón J. M., Díaz Verdejo J., Hudec R., López Soler J. M., Berná Galiano J. Á., Casares J., Fabregat J., Páta P., Sánchez Fernández C., Sabau-Graziati M. D., Trigo-Rodríguez J. M., Vitali F. (2006). BOOTES-IR: a robotic nIR astronomical observatory devoted to follow-up of transient phenomena. Proc. SPIE, 6267, 62670I.
https://doi.org/10.1117/12.671579
7. Castro-Tirado A. J., Soldán J., Bernas M., Páta P., Rezek T., Hudec R., Sanguino T. M., de la Morena B., Berná J. A., Rodríguez J., Peña A., Gorosabel J., Más-Hesse J. M., Giménez A. (1999). The Burst Observer and Optical Transient Exploring System (BOOTES). Astron. and Astrophys. Suppl. Ser., 138, 583-585.
https://doi.org/10.1051/aas:1999362
8. Chen L. G., Zheng X. B., Hong J., Qiao Y. L., Wang Y. J. (2010). A novel method for adjusting CCD camera in geometrical calibration based on a two-dimensional turntable. Optik, 121, 486-489.
https://doi.org/10.1016/j.ijleo.2008.08.004
9. Chipman R. A., Lam W. S. T., Young G. (2018). Polarized Light and Optical Systems. CRC Press, Taylor & Francis Group. Ser.: Optical Sciences and Applications of Light, 1036 p. ISBN 9781351129121.
https://doi.org/10.1201/9781351129121
10. Collett E. (2005). Field Guide to Polarization. SPIE Press, 134 p. ISBN: 9780819458681
https://doi.org/10.1117/3.626141
11. Collins P., Redfern R. M., Sheeha B. (2008). Design, Construction and Calibration of the Galway Astronomical Stokes Polarimeter (GASP). AIP Conf. Proc., 984, 241-246.
https://doi.org/10.1063/1.2896936
12. Crutcher R. M., Wandelt B. D., Heiles C., Falgarone E., Troland T. H. (2010). Magnetic Fields in Interstellar Clouds from Zeeman Observations: Inference of Total Field Strengths by Bayeslan Analysis. Astrophys. J., 725, 466-479.
https://doi.org/10.1088/0004-637X/725/1/466
13. Devogèle M., Cellino A., Bagnulo S., Rivet J. P., Bendjoya P., Abe L., Pernechele C., Massone G., Vernet D., Tanga P., Dimur C. (2017). The Calern Asteroid Polarimetric Survey using the Torino polarimeter: assessment of instrument performances and first scientific results. Mon. Notic. Roy. Astron. Soc., 465, 4335-4347.
https://doi.org/10.1093/mnras/stw2952
14. Fishman G. J., Meegan C. A. (1995). Gamma-Ray Bursts. Annu. Rev. Astron. and Astrophys., 33, 415-458.
https://doi.org/10.1146/annurev.aa.33.090195.002215
15. Götz D., Laurent P., Lebrun F., Daigne F., Bošnjak Ž. (2009). Variable polarization meashured in the prompt emission of GRB 04121 9A using IBIS on board integral. Astrophys. J., 695, L208.
https://doi.org/10.1088/0004-637X/695/2/L208
16. Heiles C. (2000). 9286 Stars: Anglomeration of Stellar Polarization Catalogs. Astron. J., 119(2), 923-927.
https://doi.org/10.1086/301236
17. Huang C., Meng B., Chang Y., Chen F., Zhang M., Han L., Xiang G., Tu B., Hong J. (2020). Geometric calibration method based on a two-dimensional turntable for a directional polarimetric camera. Appl. Opt., 59(1), 226-233.
https://doi.org/10.1364/AO.59.000226
18. Ivanova O. V., Dlugach J. M., Afanasiev V. L., Reshetnyk V. M., Korsun P. P. (2015). CCD polarimetry of distant comets C/2010 S1 (LINEAR) and C/2010 R1 (LINEAR) at the 6-m telescope of the SAO RAS. Planet. and Space Sci., 118, 199-210.
https://doi.org/10.1016/j.pss.2015.05.009
19. Ivanova O., Rosenbush V., Afanasiev V., Kiselev N. (2017). Polarimetry, photometry, and spectroscopy of comet C/2009 P1 (Garradd). Icarus, 284, 167-182.
https://doi.org/10.1016/j.icarus.2016.11.014
20. Ivanova O., Rosenbush V., Luk'yanyk I., Kolokolova L., Kleshchonok V., Kiselev N., Kirk Z. R. (2021). Observations of distant comet C/2011 KP36 (Spacewatch): photometry, spectroscopy, and polarimetry. Astron. and Astrophys., 651, A29.
https://doi.org/10.1051/0004-6361/202039668
21. Jannuzi B. T., Green R. F., French H. (1993). An optical polarization survey for BL Lacertae objects and highly polarized quasars. Astrophys. J., 404, 100-111.
https://doi.org/10.1086/172262
22. Kawabata K. S., Nagae O., Chiyonobu S., Tanaka H., Nakaya H., Suzuki M., Kamata Y., Miyazaki S., Hiragi K., Miyamoto H., Yamanaka M., Arai A., Yamashita T., Uemura M., Ohsugi T., Isogai M., Ishitobi Y., Sato S. (2008). Wide-field one-shot optical polarimeter: HOWPol. Proc. SPIE, 70144L.
https://doi.org/10.1117/12.788569
23. Kolokolova L., Kimura H., Kiselev N., Rosenbush V. (2007). Two different evolutionary types of comets proved by polarimetric and infrared properties of their dust. Astron. and Astrophys., 463(3), 1189-1196.
https://doi.org/10.1051/0004-6361:20065069
24. Li H.-B. (2021). Magnetic Fields in Molecular Clouds - Observation and Interpretation. Galaxies, 9(2), 41.
https://doi.org/10.3390/galaxies9020041
25. Lin H.-N., Li X., Chang Z. (2017). Polarization of gamma-ray burst afterglows in the synchrotron self-Compton process from a highly relativistic jet. Chinese Phys., 41(4), 045101.
https://doi.org/10.1088/1674-1137/41/4/045101
26. Llull P., Myhre G., Pau S. (2011). Lens array Stokes imaging polarimeter. Meas. Sci. Technol., 22, 065901.
https://doi.org/10.1088/0957-0233/22/6/065901
27. Magalhães A. M., Gomes A. L., de Almeida V. A., Rodrigues C. V., Pereyra A., Wisniewski J., Bjorkman K., Bjorkman J., Meade M., Babler B. L. (2008). The magnetic field structure of the Small Magellanic Cloud. Proc. IAU, 4, S256, 178-183.
https://doi.org/10.1017/S1743921308028421
28. Maharana S., Kypriotakis J. A., Ramaprakash A. N., Rajarshi C., Anche R. M., Shrish Shrish, Blinov D., Eriksen H. K., Ghosh T., Gjerløw E., Mandarakas N., Panopoulou G. V., Pavlidou V., Pearson T. J., Pelgrims V., Potter S. B., Readhead A. C. S., Skalidis R., Tassis K., Wehus I. K. (2021). WALOP-South: A Four Camera One Shot Imaging Polarimeter for PASIPHAE Survey. Paper I. Optical Design. J. Astron. Telesc., Instrum., and Systems, 7(1), 014004.
https://doi.org/10.1117/1.JATIS.7.1.014004
29. Martínez-Solaeche G., Karakci A., Delabrouille J. (2018). A 3D model of polarized dust emission in the Milky Way. Mon. Notic. Roy. Astron. Soc., 476, 1310-1330.
https://doi.org/10.1093/mnras/sty204
30. Martins J. V. (2018). The Hyperangular Imaging Polarimeter (HARP) and the Use of Nanosatellites for Earth Science Remote Sensing.
URL: http://www.fap.if.usp.br/~hbarbosa/uploads/Site/ JournalClub/Vanderlei_11jul2018.pdf (Last accessed: 23.02.2024).
31. McKee C., Ostriker E. (2007). Theory of Star Formation. Annu. Rev. Astron. and Astrophys., 45, 565-687.
https://doi.org/10.1146/annurev.astro.45.051806.110602
32. Milinevsky G., Oberemok Y., Syniavskyi I., Bovchaliuk A., Kolomiets I., Fesianov I., Wang Y. (2019). Calibration model of polarimeters on board the Aerosol-UA space mission. J. Quant. Spectrosc. and Radiat. Transfer., 229(5), 92-105.
https://doi.org/10.1016/j.jqsrt.2019.03.007
33. Minami Y. (2020). Determination of miscalibrated polarization angles from observed cosmic microwave background and foreground EB power spectra: Application to partial-sky observation. Prog. Theor. Exp. Phys., 6, 063E01.
https://doi.org/10.1093/ptep/ptaa057
34. Minami Y., Komatsu E. (2020). New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Phys. Rev. Lett., 125, 221301.
https://doi.org/10.1103/PhysRevLett.125.221301
35. Minami Y., Ochi H., Ichiki K., Katayama N., Komatsu E., Matsumura T. (2019). Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles from CMB experiments. Prog. Theor. Exp. Phys., 2019(8), 083E02.
https://doi.org/10.1093/ptep/ptz079
36. Mudge J., Virgen M., Dean P. (2009). Near-infrared simultaneous Stokes imaging polarimeter. Proc. SPIE, 7461, 74610L-1-74610L-6.
https://doi.org/10.1117/12.828437
37. Mu T., Bao D., Han F., Sun Y., Chen Z., Tang Q., Zhang C. (2019). Optimized design, calibration, and validation of an achromatic snapshot full-Stokes imaging polarimeter. Opt. Express, 27(16), 23009-23028.
https://doi.org/10.1364/OE.27.023009
38. Mu T., Zhang C., Liang R. (2015). Demonstration of a snapshot full-Stokes division-of-aperture imaging polarimeter using Wollaston prism array. J. Opt., 17(12), 125708.
https://doi.org/10.1088/2040-8978/17/12/125708
39. Mu T., Zhang C., Li Q., Liang R. (2015). Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters. Opt. Express, 23(8), 10822-10835.
https://doi.org/10.1364/OE.23.010822
40. Oliva E. (1997). Wedged double Wollaston, a device for single shot polarimetric measurements. Astron. and Astrophys. Suppl. Ser., 123(3), 589-592.
https://doi.org/10.1051/aas:1997175
41. Pedersini F., Sarti A., Tubaro S. (1999). Accurate and simple geometric calibration of multi-camera Systems. Signal Proc.,
77(3), 309-334.
https://doi.org/10.1016/S0165-1684(99)00042-0
42. Pernechele C., Abe L., Bendjoya P., Cellino A., Massone G., Rivet J. P., Tanga P. (2012). A "single-shot" optical linear polarimeter for asteroids studies. Proc. SPIE, 8446, 84462H-1-6.
https://doi.org/10.1117/12.925933
43. Perreault J. D. (2013). Triple Wollaston-prism complete-Stokes imaging polarimeter. Opt. Lett., 38(19), 3874-3877.
https://doi.org/10.1364/OL.38.003874
44. Pezzaniti J. L., Chenault D., Roche M., Reinhardt J., Pezzaniti J. P., Schultz H. (2008). Four camera complete Stokes
imaging polarimeter. Proc. SPIE., 6972, 69720J-1b-69720J-12.
https://doi.org/10.1117/12.784797
45. Piran T. (1999). Gamma ray bursts and the fireball model. Phys. Rep., 314(6), 575-667. DOI: 10.1016/S0370-1573(98)00127-6.
https://doi.org/10.1016/S0370-1573(98)00127-6
46. Radecke H. D., Kanbach G. (1992). The Egret High Energy Gamma Ray Telescope on GRO: Instrument Description and Scientific Mission. Data Analysis in Astronomy IV. Ed. V. Di. Gesu et al., 303-310.
https://doi.org/10.1007/978-1-4615-3388-7_31
47. Ramaprakash A. N., Rajarshi C. V., Das H. K., Khodade P., Modi D., Panopoulou G., Maharana S., Blinov D., Angelakis E., Casadio C., Fuhrmann L., Hovatta T., Kiehlmann S., King O. G., Kylafis N., Kougentakis A., Kus A., Mahabal A., Marecki A., Myserlis I., Paterakis G., Paleologou E., Liodakis I., Papadakis I., Papamastorakis I., Pavlidou V., Pazderski E., Pearson T. J., Readhead A. C. S., Reig P., Slowikowska A., Tassis K., Zensus J. A. (2019). RoboPol: A four-channel optical
imaging polarimeter. Mon. Notic. Roy. Astron. Soc., 485, 2355-2366.
https://doi.org/10.1093/mnras/stz557
48. Romero G. (2005). Proc. Marcel Grossmann 10th Meeting, World Scientific Publishing (Singapore), P. 2429.
49. Shestopalov D. I., Golubeva L. F. (2015). Polarimetric properties of asteroids. Adv. Space Res., 56, 2254-2274.
https://doi.org/10.1016/j.asr.2015.08.013
50. Shibata S., Hagen N., Kawabata S., Otani Y. (2019). Compact and high-speed Stokes polarimeter using three-way polarization- preserving beam splitters. Appl. Opt., 58(21), 5644-5649.
https://doi.org/10.1364/AO.58.005644
51. Shrestha M., Steele I. A., Piascik A. S., Jermak H., Smith R. J., Copperwheat C. M. (2020). Characterization of a dualbeam, dual-camera optical imaging polarimeter. Mon. Notic. Roy. Astron. Soc., 494, 4676-4686.
https://doi.org/10.1093/mnras/staa1049
52. Shu F., Adams F., Lizano S. (1987). Star Formation in Molecular Clouds: Observation and Theory. Annu. Rev. Astron. and Astrophys., 25, 23-81.
https://doi.org/10.1146/annurev.aa.25.090187.000323
53. Sillanpää A., Takalo L. O., Nilsson K., Kikuchi S. (1993). Photopolarimetry of BL Lac. Astrophys. Space Sci., 206, 55-70.
https://doi.org/10.1007/BF00658383
54. Sinyavskiĭ I. I., Ivanov Yu. S., Vid'machenko A. P. (2013). Concept of the construction of the optical setup of a panoramic Stokes polarimeter for small telescopes. J. Opt. Technol., 80(9), 545-548.
https://doi.org/10.1364/JOT.80.000545
55. Steele I. A., Mundell C. G., Smith R. J., Kobayashi S., Guidorzi C. (2009). Ten percent polarized optical emission from GRB-090102. Nature, 462, 767-769.
https://doi.org/10.1038/nature08590
56. Svalheim T. L., Andersen K. J., Aurlien R., Banerji R., Bersanelli M., Bertocco S., Brilenkov M., Carbone M., Colombo L. P. L., Eriksen H. K., Foss M. K., Franceschet C., Fuskeland U., Galeotta S., Galloway M., Gerakakis S., Gjerløw E., Hensley B., Herman D., Iacobellis M., Ieronymaki M., Ihle H. T., Jewell J. B., Karakci A., Keihänen E., Keskitalo R., Maggio G., Maino D., Maris M., Paradiso S., Partridge B., Reinecke M., Suur-Uski A.-S., Tavagnacco D., Thommesen H., Watts D. J., Wehus I. K., Zacchei A. (2023). Beyond Planck. XIV. Polarized foreground emission between 30 and 70 GHz. Astron. and Astrophys., 675, A14.
https://doi.org/10.1051/0004-6361/202243160
57. Syniavskyi I., Ivanov Yu. S. (2014). Four-channel imaging Stokes polarimeter for small telescopes. Contrib. Astron. Observ. Skalnate Pleso, 43, 253-255.
58. Syniavskyi I. I., Ivanov Yu. S., Sosonkin M. G., Milinevsky G. P., Koshman G. (2018). Multispectral imager-polarimeter of the "AEROSOL-UA" space project. Space Sci. and Technol., 24(3), 23-32.
https://doi.org/10.15407/knit2018.03.023
59. Syniavskyi I., Oberemok Ye., Danylevsky V., Bovchaliuk A., Fesianov I., Milinevsky G., Savenkov S., Yukhymchuk Yu., Sosonkin M., Ivanov Yu. (2021). Aerosol-UA satellite mission for the polarimetric study of aerosols in the atmosphere. J. Quant. Spectrosc. and Radiat. Transfer., 267, 107601.
https://doi.org/10.1016/j.jqsrt.2021.107601
60. Tedesco E. F. (1994). Asteroid albedos and diameters. Asteroids, comets, meteors 1993: Proc. 160th Int. Astron. Union (Belgirate, Italy, June 14-18, 1993). Eds A. Milani, M. Di Martino, and A. Cellino. Int. Astron. Union. Symp., No. 160, 55-74.
https://doi.org/10.1017/S0074180900046453
61. Toth L. V., Doi Y., Zahorecz S., Pinter S., Racz I. I., Bagoly Z., Balazs L.G., Horvath I., Kiss C., Kovács T., Onishi T. (2019). Galactic foreground of gamma-ray bursts from AKARI Far-Infrared Surveyor. Publ. Astron. Soc. Jap., 71(1), 10 (1-20).
https://doi.org/10.1093/pasj/psy123
62. Tyo J., S., Goldstein D., L., Chenault D. B., Shaw J. A. (2006). Review of passive imaging polarimetry for remote sensing applications. Appl. Opt., 45(22), 5453-5469.
https://doi.org/10.1364/AO.45.005453
63. Zhang H. (2019). Blazar optical polarimetry: Current progress in observations and theories. Galaxies, 7(4), 85.
https://doi.org/10.3390/galaxies7040085
64. Zhang Z. (2020). А flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334.
https://doi.org/10.1109/34.888718
65. Zhu S., Jin S., Shu Y., Liu Z., Hong J. (2023) Polarization calibration method for simultaneous imaging polarization camera. Proc. SPIE., 125570D.
https://doi.org/10.1117/12.2646131