Water resource monitoring for the drainage systems contaminated by radiation based on the complex of satellite imaging and ground observations (in the context of regional climate changes)

1Azimov, OT, 1Tomchenko, OV, 2Shevchenko, OL, 3Kireev, SI
1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
2Ukrainian Research Hydrometeorological Institute under the Ministry for Emergencies and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3State Specialized Enterprise "Ecocentre", Chornobyl, Kyivska oblast, Ukraine
Space Sci. & Technol. 2024, 30 ;(2):69-92
https://doi.org/10.15407/knit2024.02.069
Publication Language: Ukrainian
Abstract: 
As a case study of the Prypiat Left Bank Drainage System of the Chornobyl Exclusion Zone, the probable onset of the multi-aqueous phase of water content in the frame of the full hydrological cycle at the end of 2022 was estimated for the entire region of Polissia. The attributes of such a process are: 1) a relative increase in the total amount of atmospheric precipitation for the period of September-October-November-December in 2022 compared to the same period in previous years within the entire left-bank part of the Prypiat River catchment basin (according to the ERA5 dataset); 2) the increase in the watering rate of the drainage system territory – both the interdam section and the area located to the northeast of the old dam (this is evidenced by an analytical comparison of the results of the thematic interpretation of Sentinel-2 image data for 02. 05.2023 and satellite data acquired by the various sensors for April-May of previous years); 3) the established facts of heavy rains that occurred in April 2023 in the studied region, flooding, submergence of the large areas, freshet in its territory in April-May of the same year.
          As a result, compared to the period 2015-2021, i.e., already after the termination of the permanent operation of the polder pumping station in the area of the left bank polder, in 2022 the level of 90Sr activity, which according to calculations could have been removed with the runoff from this territory, increased significantly – 4 times more as compared to 2021 and 20 times more compared to 2020. Therefore, considering the above hydrometeorological factors, the prediction regarding the increase in the level of 90Sr activity, which will be carried out with the runoff from the area of the left-bank polder to the Prypiat River, both in 2023, and in the following 2-3 years is substantiated.
Keywords: Chornobyl Exclusion Zone, Left Bank Drainage System, monitoring, radionuclide carry-over, remote sensing methods, surface runoff, water resources
References: 

1. Azimov O., Kuraeva I., Trofymchuk O., Zlobina K., Karmazynenko S. (2020). Monitoring assessment of the surface water quality within the areas for the municipal solid waste disposal. Visnyk of Taras Shevchenko Nat. Univ. of Kyiv: Geology, 4 (91),
56-60.
http://doi.org/10.17721/1728-2713.91.08 [in Ukrainian with English abstract].

2. Azimov O. T., Shevchenko O. L. (2005). Instillation the modern information systems as a means for increasing the effectivity of water protection measures within radioactivity contaminated areas of the Chornobyl Exclusion Zone. Ecology of the

Environment and Safety of Human Livelihood, 1, 37-40 [in Ukrainian with English summary].

3. Azimov O. T., Shevchenko O. L., Tomchenko O. V. (2022). Geoinformation analysis of the satellite imagery data in order to assess the changes in radiohydrological conditions over the study territories. Ukr. J. Remote Sensing, 9 (2), 13-36.
https://doi.org/10.36023/ujrs.2022.9.2.213 [in Ukrainian with English abstract].

4. Bairak G. R., Mukha B. P. (2010). Remote sensing of the Earth: Training manual. Lviv: Ivan Franko Nat. Univ. Publ. center, 712 p. ISBN 978-966-613-761-9 [in Ukrainian].

5. Vyshnyakov V. Y., Okhariev V. O., Radchuk I. V., Shumeiko V. O. (2013). GIS-technologies for decision making in context of water resource management and ecological safety of limnological ecosystems. Sci. Notes of Taurida V. Vernadsky Nat.
Univ.: Geography, 26 (65), 1, 49-54 [in Ukrainian with English summary].

6. Derevets V. V., Kireev S. I., Obrizan S. M., Hodun B. O., Khaliava V. H., Kupchenko P. H., Bytsulia V. V., Horskyi B. O., Nazarov O. B., Palanskyi V. A. (2002). The radiation status of the Exclusion Zone in 2001. Bull. Ecological State Exclusion
Zone and Zone Absolute (Mandatory) Resettlement, 1 (19), 3-31 [in Ukrainian].

7. Dovhyi S. O., Lyalko V. I., Trofymchuk O. M., Fedorovsky O. D., Azimov O. T., Veriuzhskyi G. Yu., Vulfson L. D., Grekov L. D., Kononov V. I., Kopiika O. V., Kostyuchenko Yu. V., Krot V. M., Lovtsov I. V., Pererva V. M., Prusov V. A., Riabokonenko
O. D., Savytskyi O. A., Sakhatsky O. I., Teremenko O. M., Khodorovsky A. Ya., Yatsenko O. V. (2001). Informatisation of aerospace Earth science. Eds. S. O. Dovhyi, V. I. Lyalko. Kyiv: Naukova Dumka, 607 p. ISBN 966-00-0743-4
[in Ukrainian].

8. Information Report on the results of radiation and environmental monitoring of the Exclusion Zone for 2022. (2022). Chornobyl: SSE Ecocentre, 35 p. [in Ukrainian].

9. Kondratiev K. Ya., Pozdniakov D. V. (1985). Remote methods of controlling after quality of natural waters. Leningrad: Nauka, 62 p. [in Russian].

10. Krasovsky G. Y., Voloshkina O. S., Ponomarenko I. G., Slobodian V. A. (2005). Inventory of water bodies in the region using the satellite images and geoinformation systems. Ecology and Resources, 11, 19-42 [in Ukrainian with English abstract].

11. Krasovsky G. Y., Petrosov V. A. (2003). Information technologies of the satellite monitoring of aquatic ecosystems and predicting urban water consumption. Kyiv: Naukova Dumka, 224 p. [in Ukrainian].

12. Kronberg P. (1985). Fernerkundung der Erde: Grundlagen und Methoden des Remote Sensing in der Geologie. Stuttgart: Ferdinand Enke Verlag, 394 p. ISBN 3-432-94601-5

13. Lyalko V. I., Fedorovsky O. D., Boyev A. G., Dranovsky V. Y., Knysh V. V., Korotaev G. K., Sirenko L. A., Azimov O. T., Bushuev Ye. I., Vulfson L. D., Yefimov V. B., Kolodyazhnyy O. A., Kostyuchenko Yu. V., Kurekin A. S., Malynovsky V. V.,
Mashkovsky O. G., Mychak A. G., Moyseyenko K. Ya., Pererva V. M., Pustovoytenko V. V., Radaykina L. M., Sakhats ky O. I., Suslin V. V., Khodorovsky A. Ya., Tsymbal V. N., Yakymchuk V. G., Voloshyn V. I., Gunchenko V. O., Kolokolov
O. O., Kotlyar O. L., Lischenko L. P., Riabokonenko O. D., Teremenko O. M., Kharechko O. G., Shchepets M. S. (2001). Space for Ukraine: Atlas. Thematically interpreted images of Ukraine's territory acquired in the frame of Ukrainian-
Russian "Okean-O" program and other space missions. Eds. V. I. Lyalko, O. D. Fedorovsky. Kyiv: NAS of Ukraine, Nat. Space Agency of Ukraine, 99 p.

14. Obodovskyi Y. O., Khilchevskyi V. K., Obodovskyi O. G. (2018). Hydromorphoecological assessment of the river bed processes of rivers in the upper Tisza river basin (within Ukraine): Monograph. Ed. O. G. Obodovskyi. Kyiv: Print-Service, 193 p.
ISBN 978-617-7069-71-4 [in Ukrainian with English abstract].

15. Podgorodetskaia L. V., Zub L. N., Fedorovskii O. D. (2010). Tte use of remote sensing data for estimation of ecological state of water bodies by the example of the Svityaz Lake. Space Science and Technology, 16 (4), 51-56.
https://doi.org/10.15407/knit2010.04.051 [in Ukrainian with English abstract].

16. Fedorovsky O. D., Sirenko L. Ya., Yakymchuk V. G. (1999). Using space images for controlling of water objects. New methods in the aerospace Earth exploration: Sci. and learning guide. Ed. V. I. Lyalko. Kyiv: CASRE IGS NAS of Ukraine,
143-148. ISBN 966-02-1398-0 [in Ukrainian].

17. Shevchenko O., Azimov O., Sakhatsky O. (2004). Modern remote aerospace technologies for integral radiohydrological monitoring. Visnyk of Taras Shevchenko Nat. Univ. of Kyiv: Geology, 29, 40-44 [in Ukrainian with English summary].

18. Shevchenko A. L., Kozitsky O. M., Nasedkin I. Yu., Akinfiev G. A., Kireev S. I., Sakhatsky A. I., Khodorovsky A. Y. (2001). Performance analysis and the variants of water-protecting complex at Left-bank polder system. Probl. Chernobyl Exclusion
Zone, 7, 112-125 [in Ukrainian with English abstract].

19. Shevchenko O. L., Nasedkin I. Yu., Kozitsky O. M., Shabatura S. S., Khodorovsky A. Ya., Sakhatsky O. I., Azimov O. T. Akinfiev G. O. Dolin V. V., Osadchyi V. I., Levchenko A. S., Tyshkevych Yu. O., Charnyi D. V., Onanko G. G., Gudzenko V.
V. (1998). Calculation of the water-radiation balance of reclamative systems of the Left-bank flood plain of the Pripyat river in 30-km Zone of the ChNPP: Report on research. Kyiv: Radioecological Center, NAS of Ukraine. 1, 213 p. [in Ukrainian].

20. Shevchenko O. L., Skorbun A. D., Charny D. V. (2021). Subordination of fluctuations of groundwater levels in the Southern
Bug River basin to climate change. Odesa Nat. Univ. Herald: Geography & Geology, 26, 2 (39), 175-194.
https://doi.org/10.18524/2303-9914.2021.2(39).246202 [in Ukrainian with English abstract].

21. Shevchenko O. L., Shestopalov V. M., Sakhatsky O. I., Nasedkin I. Yu., Gudzenko V. V., Akinfiev G. O. (1999). Left-bank floodplain: ways to solve the problem of overwetting and increase 90Sr removal through the duct in the dam No 7. Bull. Ecological
State Exclusion Zone and Zone Absolute (Mandatory) Resettlement, 14, 51-57. [in Ukrainian].

22. Shumakov F. T., Azimov O. T. (2013). On the use of GIS and satellite imagery data to assess the quality of water in reservoirs. 12th EAGE Int. Conf. on Geoinformatics - Theoretical and Applied Aspects (13-16 May 2013, Kiev, Ukraine).
Conf. Papers, id: cp-347-00049.
https://doi.org/10.3997/2214-4609.20142427 [in Russian with English summary].

23. Advances in geoscience and remote sensing. Ed. G. Jedlovec. (2009). Vukovar, Croatia: In-Teh, 741 p.

24. Azimov O. T., Dorofey Ye. M., Trofymchuk O. M., Kuraeva I. V., Zlobina K. S., Karmazynenko S. P. (2019). Monitoring and assessment of impact of municipal solid waste landfills on the surface water quality in the adjacent ponds. 13th Int. Sci.
Conf. on Monitoring of Geological Processes and Ecological Condition of the Environment (12-15 November 2019, Kyiv, Ukraine). Conf. Papers, 2019, 1-6.
https://doi.org/10.3997/2214-4609.201903228

25. Azimov O. T., Kireev S. I., Tomchenko O. V., Veremenko D. M. (2022). Monitoring of the radioecological state of the atmospheric air using the ground survey and multispectral satellite imaging data during wildfires. 16th Int. Sci. Conf. on
Monitoring of Geological Processes and Ecological Condition of the Environment (15-18 November 2022, Kyiv, Ukraine).Conf. Papers, 2022, 1-5.
https://doi.org/10.3997/2214-4609.2022580105

26. Azimov O. T., Tomchenko O. V., Andreiev A. A., Dorofey Ye. M., Shevchenko O. L., Kireev S. I. (2023). Monitoring of the current underflooding processes of drainage systems in the Exclusion Zone by means of remote sensing and GIS-technologies.
17th Int. Sci. Conf. on Monitoring of Geological Processes and Ecological Condition of the Environment (7-10 November 2023, Kyiv, Ukraine). Conf. Papers, 2023, 1-5.
https://doi.org/10.3997/2214-4609.2023520129

27. Azimov O., Tomchenko O., Shevchenko O., Dorofey Ye. (2022). Satellite monitoring of the natural and technogenic events on the left-bank Pripyat reclamation system of the Chornobyl Exclusion Zone. 16th Int. Sci. Conf. on Monitoring of
Geological Processes and Ecological Condition of the Environment (15-18 November 2022, Kyiv, Ukraine). Conf. Papers, 2022. 1-6.
https://doi.org/10.3997/2214-4609.2022580102

28. Campbell J. B., Wynne R. H. (2011). Introduction to remote sensing (5th ed.). New York, London: Guilford Press, 718 p. ISBN 978-1-60918-176-5

29. Doerffer R. (1978). Zum Problem der Fernerkundung von Substanzen im Wasser mit dem Multispektralabtaster. Bildmessung und Luftbildwesen, 4, 133-138.

30. Doerffer R. (1979). Untersuchungen über die Verteilung oberflächennaher Substanzen im Elbe-Ästuar mit Hilfe von Fernmeßverfahren. Archiv für Hydrobiologie, Supplement, 43 (Elbe-Ästuar 4) (2/3), 119-224.

31. ERA5 hourly data on single levels from 1940 to present.
URL: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-singl...

32. Fekrache F., Boudeffa K. (October 16th, 2023). Application of mapping and statistical study for the assessment of surface water quality in the Safsaf River (North-Eastern Algeria). Res. Square, 1-17. https://doi.org/10.21203/rs.3.rs-3440178/v1

33. Heiskary S. A., Wilson C. B. (2005). Minnesota lake water quality assessment report: Developing nutrient criteria (third ed.).Minnesota Pollution Control Agency, 188 p.

34. McFeeters S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sensing, 17 (7), 1425-1432.
https://doi.org/10.1080/01431169608948714

35. Olmanson L. G., Bauer M. E., Brezonik P. L. (2008). A 20-year Landsat water clarity census of Minnesota's 10,000 lakes. Remote Sensing of Environment, 112 (11), 4086-4097.
https://doi.org/10.1016/j.rse.2007.12.013

36. Rowland E. D., Okpobiri O. (2021). Floodplain Mapping and Risks Assessment of the Orashi River Using Remote Sensing and GIS in the Niger Delta Region, Nigeria. J. Geographical Res., 4 (2), 10-16. https://doi.org/10.30564/jgr.v4i2.3014
https://doi.org/10.30564/jgr.v4i2.3014

37. Rubin H. J., Lutz D. A., Steele B. G., Cottingham K. L., Weathers K. C. Ducey M. J., Palace M., Johnson K. M., Chipman J. W. (2021). Remote sensing of lake water clarity: Performance and transferability of both historical algorithms and machine
learning. Remote Sensing, 13 (8), 1434.
https://doi.org/10.3390/rs13081434

38. Santos G. M. D., Navarro-Pedreño J., Meléndez-Pastor I., Gómez Lucas I. (2021). Using Landsat Images to Determine Water Storing Capacity in Mediterranean Environments. J. Geographical Res., 4 (4), 58-67.
https://doi.org/10.30564/jgr.v4i4.3780

39. Van Loon A. F. (2015). Hydrological drought explained. WIREs Water, 2 (4), 359-392.
https://doi.org/10.1002/wat2.1085