Orbit selection of the space industrial platform with distributed electrical-power system modules

1Alpatov, AP, 2Wang, Changqing, 3Lu, Hongshi, 4Lapkhanov, Erik
1Institute of Technical Mechanics of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine; 2- School of Automation, Northwestern Polytechnical University, Xi'an, China;
2School of Automation, Northwestern Polytechnical University, Xi'an, China
3School of Automation, Northwestern Polytechnical University, Xi'an, China; 3- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, China
4Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
Space Sci. & Technol. 2024, 30 ;(4):01-01
Publication Language: English
Abstract: 
Space industrialization is one of the prospective directions in modern aerospace science and engineering for space exploration of new resources and habitats. The key issue is to provide industrial space modules with the required amount of electricity needed. One type of power supply for such modules is the use of distributed power systems, which consist of constellations of spacecraft with contactless power transmission. Given this, the problem of rational orbit selection for their dislocation arises. Considering these problems, the methodology for orbits selection of the space industrial platform with distributed electrical-power system modules is proposed in the paper. This methodology includes orbital translation, attitude, relative dynamics estimation for each power satellite, and its corresponding orbit optimization algorithm.
       The orbit optimization algorithm includes statistical processing and elements of gradient and coordinate descent methods, allowing us to determine the most significant parameter influencing the duration of the contactless power transmission session. Also, quaternion mathematics is used to estimate the dynamics in the program parameters for targeting the transmitter spacecraft antenna to the receiver spacecraft rectenna. With the approaches mentioned above, the methodology proposed in this paper allows us to form the requirements for the power satellites’ attitude and orbit control system to improve the process of selecting corresponding design parameters of such systems.
        Thus, the usage of the proposed methodology can allow the designing of the power satellites' attitude and orbit control system in the conceptual stages of designing.
Keywords: contactless power transmitting; orbit selection; targeting quaternion; optimization of orbit parameters
References: 
1. Landis, G. A. (2006) Re-evaluating satellite solar power systems for Earth. IEEE 4th World Conference on Photovoltaic Energy Conversion. Waikoloa, HI, USA, 7–12 May. DOI: 10.1109/WCPEC.2006.279877
2. Chaudhary, K., Kumar, D. (2018) Satellite solar wireless power transfer for baseload ground supply: clean energy for the future. Eur J Futures Res, 6(9). https://doi.org/10.1186/s40309-018-0139-7
3. Gosavi, S. S., Mane, H. G., Pendhari, A. S., Magdum, A. P., Deshpande, S., Baraskar, A., Jadhav, M., and Husainy, A. (2021) A review on space based solar power," Journal of Thermal Energy Systems.. 6(1), 16–24. doi:10.46610/jotes.2021.v06i01.003.
4. Palii, O. S., Lapkhanov, E. O., Svorobin D. S. (2022) Model of distributed space power system motion control. Technical mechanics, 4, 35–50. https://doi.org/10.15407/itm2022.04.035
5. Sasaki, S. and JAXA Advanced Mission Re-search Group (2009) SSPS development road map. IAC-09.C3.1.4, URL: http://www13.plala.or.jp/spacedream/PDFSPSENG12.pdf.
6. Khoroshylov, S. V. (2009) On algorithmic support of orientation control of solar space power plants. Part 1. System technologies, 61(2), 153–167 [in Russian]
7. Mankins, J. C. (2014) The Case for Space Solar Power. Virginia Edition Publishing, LLC, 580.
8. Makarov, A. L., Khoroshilov, S. V. (2012) Attitude control of solar battery and transmitting antenna for space solar power satellite. Kosm. nauka tehnol., 18(3), 03–09, https://doi.org/10.15407/knit2012.03.003 [in Russian]
9.  Yermoldina, G. T., Suimenbayev, B. T., Sysoev, V. K., Suimenbayeva, Zh. B. (2018) Features of Space Solar Power Station Control System. Acta Astronautica, 2018, 158, 111 – 120. https://doi.org/10.1016/j.actaastro.2018.04.001
10. Enmei Wang, Shunan Wu, Yufei Liu, Zhi-gang Wu, Xiangdong Liu (2019) Distributed vibration control of a large solar power satellite. Astrodynamics, 3(2), 189–203. https://doi.org/10.1007/s42064-018-0046-5
11. Bergsrud, C., Straub, J. (2014) A space-to-space microwave wireless power transmission experiential mission using small satellites. Acta Astronautica, 103. 193 – 203. https://doi.org/10.1016/j.actaastro.2014.06.033
12. Aditya, B., Hongru, C., Yasuhiro, Y., Shuji, N., Toshiya, H. (2021) Verify the Wireless Power Transmission in Space using Satellite to Satellite System. Interna-tional Journal of Emerging Technologies, 12(2), 110–118.
13. Bergsrud, C., Bernaciak, R., Kading, B., McClure, J., Straub, J., Shahukhal, S., Williams, K. (2021) SunSat Design Competition 2013-2014 Third Place Winner – Team University of North Dakota: Nano SSP Satellite. Online Journal of Space Communication, 11(18). URL: https://ohioopen.library.ohio.edu/cgi/viewcontent.cgi?article=1444&conte...
14. Reshetnev, M. F., Lebedev, V. A., Bartenev, V. A. and others (1988) Control and navigation of artificial Earth satellites in near-circular orbits. Mashinostroenie Publishing House, 336. [in Russian]
15. Fortescue, P., Stark, J., Swinerd, G. (2011) Spacecraft systems engineering. John Wiley & Sons Ltd. Chichester, 724.
16. Golubek, A. V., Filipenko, I. M., Tatarevskii, K. E. (2020) A Priory Estimation of Orbital Injection Accuracy for Modern Launch Vehicles with a Strapdown Inertia Navigation System. Dnipro: LIRA, 187. [in Russian].
17. Alpatov, A. P., Khoroshylov, S. V., Maslova, A. I. (2019) Сontactless de-orbiting of space debris by the ion beam. Dynamics and control. Кyiv: Akademperiodyka, 170.
18. National geospatial-intelligence agency (NGA) standardization document (2008). Department of defense, World Geodetic System 1984, 208. URL: https://nsgreg.nga.mil/doc/view?i=4085 (last accessed 16.08.2023).
19.  Zbrutskii, A. V., Ganzha, A. P. (2011) Navigation of the Earth remote sensing satellite by land surface imagery. National technical university “Kyiv Polytechnic Institute” Publishing House, 160. [in Russian]  
20. Alpatov, A., Kravets, Vic., Kravets, Vol., Lapkhanov, E. (2021) Representation of the kinematics of the natural trihedral of a spiral-helix trajectory by quaternion matrices. Transactions on Machine Learning and Artificial Intelligence, 9(4), 18–29,  https://doi.org/10.14738/tmlai.94.10523
21. Curtis H. (2019) Orbital Mechanics for Engineering Students. Butterworth-Heinemann – 4th Edition, 692.
22. Gordeev V. N. (2016) Quaternions and biquaternions with applications in geometry and mechanics. Kyiv: Publishing house "Steel", 316.
23. Lockett, A.J. (2020). Review of Optimization Methods. In: General-Purpose Optimization Through Information Maximization. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62007-6_2
24. Rabanser, S., Neumann, L., & Haltmeier, M. (2019). Analysis of the Block Coordinate Descent Method for Linear Ill-Posed Problems. SIAM Journal on Imaging Sciences, 12(4), 1808–1832. doi:10.1137/19m1243956 
25. Shuhua Chang, Deli Li & Yongcheng Qi (2023) Pearson's goodness-of-fit tests for sparse distributions. Journal of Applied Statistics, 50:5, 1078-1093, DOI: 10.1080/02664763.2021.2017413

26. ISO 16269-6:2014. Statistical interpretation of data — Part 6: Determination of statistical tolerance intervals. URL: https://www.iso.org/obp/ui/en/#iso:std:iso:16269:-6:ed-2:v1:en