Modeling the biophysical condition of the Ukrainian steppe zone using remote sensing data
Heading:
| 1Lubskyi, MS, 2Khyzhniak, AV, 1Orlenko, TA, 1Golubov, SI 1Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine 2State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine |
| https://doi.org/10.15407/knit2025.02.020 |
| Publication Language: English |
Abstract: The steppe zone of Ukraine is facing significant pressure due to global climate change and anthropogenic activities related to agriculture and mining. In addition, the full-scale russian invasion has caused war crimes that have had catastrophic consequences for the steppe ecosystems and the nature reserves, making conservation efforts even more urgent. In this regard, an urgent scientific task arises to develop a comprehensive approach to geospatial modeling of the biophysical condition of the steppe zone and identifying areas most vulnerable to climate challenges and damage.
The paper introduces a robust methodology for multi-criteria assessment and forecasting the conditions in the study area. This methodology is based on the selection of biophysical indicators obtained from remote sensing data. These indicators are ranked by their impact on the vulnerability and integrated into a single multi-criteria condition assessment using the analytic hierarchy process (AHP). The area state forecast is also performed based on a time series of the data for the research period (2015-2024). Much of the processing of large geospatial data sets was carried out using the Google Earth Engine platform and cloud data processing, ensuring the reliability and accuracy of the results.
As a result, a geospatial distribution of the values of biophysical conditions of the Ukrainian steppe zone was obtained, which revealed several regions particularly vulnerable to adverse climatic factors, including the south of
|
| Keywords: analytic hierarchy process, biophysical condition, climate change, geospatial modeling, remote sensing, vulnerability indicator |
References:
1. Chen Y., Taylor P., Cuddy S., Wahid S., Penton D., Karim F. (2024). Inferring vegetation response to drought at multiscale from long-term satellite imagery and meteorological data in Afghanistan. Ecol. Indic., 158, 111567.
https://doi.org/10.1016/j.ecolind.2024.111567
2. Diem P. K., Nguyen C. T., Diem N. K., Diep N. T.i H., Pham Thao T. B., Hong T. G., Phan T. N. (2024). Remote sensing for urban heat island research: Progress, current issues, and perspectives. Remote Sens. Appl.: Soc. Environ., 33, 101081.
2. Diem P. K., Nguyen C. T., Diem N. K., Diep N. T.i H., Pham Thao T. B., Hong T. G., Phan T. N. (2024). Remote sensing for urban heat island research: Progress, current issues, and perspectives. Remote Sens. Appl.: Soc. Environ., 33, 101081.
https://doi.org/10.1016/j.rsase.2023.101081
3. Ejaz N., Khan A. H., Saleem M. W., Elfeki A. M., Rahman K. Ur, Hussain S., Ullah S., Shang S. (2024). Multi-criteria decision-making techniques for groundwater potentiality mapping in arid regions: A case study of Wadi Yiba, Kingdom of Saudi Arabia. Groundwater Sustainable Dev., 26, 101223.
3. Ejaz N., Khan A. H., Saleem M. W., Elfeki A. M., Rahman K. Ur, Hussain S., Ullah S., Shang S. (2024). Multi-criteria decision-making techniques for groundwater potentiality mapping in arid regions: A case study of Wadi Yiba, Kingdom of Saudi Arabia. Groundwater Sustainable Dev., 26, 101223.
https://doi.org/10.1016/j.gsd.2024.101223
4. Fathi-Taperasht A., Shafizadeh-Moghadam H., Minaei M., Xu T. (2022). Influence of drought duration and severity on drought recovery period for different land cover types: evaluation using MODIS-based indices. Ecol. Indic., 141, 109146
4. Fathi-Taperasht A., Shafizadeh-Moghadam H., Minaei M., Xu T. (2022). Influence of drought duration and severity on drought recovery period for different land cover types: evaluation using MODIS-based indices. Ecol. Indic., 141, 109146
https://doi.org/10.1016/j.ecolind.2022.109146
5. Fuentes I., Vervoort R. W., McPhee J. (2024). Global evapotranspiration models and their performance at different spatial scales: Contrasting a latitudinal gradient against global catchments. J. Hydrol., 628, 130477.
5. Fuentes I., Vervoort R. W., McPhee J. (2024). Global evapotranspiration models and their performance at different spatial scales: Contrasting a latitudinal gradient against global catchments. J. Hydrol., 628, 130477.
https://doi.org/10.1016/j.jhydrol.2023.130477
6. Gong Z., Ge W., Guo J., Liu J. (2024). Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities. ISPRS J. Photogramm. Remote Sens., 217, 149—164.
6. Gong Z., Ge W., Guo J., Liu J. (2024). Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities. ISPRS J. Photogramm. Remote Sens., 217, 149—164.
https://doi.org/10.1016/j.isprsjprs.2024.08.011
7. Hwang C. L., Yoon K. (1981). Multiple attribute decision making: Methods and applications. Springer. 8. Jiao W., Wang L., McCabe M. F. (2021). Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sens. Environ., 256, 112313.
7. Hwang C. L., Yoon K. (1981). Multiple attribute decision making: Methods and applications. Springer. 8. Jiao W., Wang L., McCabe M. F. (2021). Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sens. Environ., 256, 112313.
https://doi.org/10.1016/j.rse.2021.112313
9. Kesselring J., Morsdorf F., Kükenbrink D., Gastellu-Etchegorry J.-P., Damm A. (2024). Diversity of 3D APAR and LAI dynamics in broadleaf and coniferous forests: Implications for the interpretation of remote sensing-based products. Remote Sens. Environ., 306, 114116.
9. Kesselring J., Morsdorf F., Kükenbrink D., Gastellu-Etchegorry J.-P., Damm A. (2024). Diversity of 3D APAR and LAI dynamics in broadleaf and coniferous forests: Implications for the interpretation of remote sensing-based products. Remote Sens. Environ., 306, 114116.
https://doi.org/10.1016/j.rse.2024.114116
10. Khachak S. H., Rafieyan O., Kamran K. V., et al. (2024). Application of Remote Sensing and Spatial Fuzzy Multi-criteria Decision Analysis to Identify Potential Dust Sources in Lake Urmia Basin, Northwest Iran. J Indian Soc. Remote Sens., 52, 2057—2071.
10. Khachak S. H., Rafieyan O., Kamran K. V., et al. (2024). Application of Remote Sensing and Spatial Fuzzy Multi-criteria Decision Analysis to Identify Potential Dust Sources in Lake Urmia Basin, Northwest Iran. J Indian Soc. Remote Sens., 52, 2057—2071.
https://doi.org/10.1007/s12524-024-01890-6
11. Lyubskyi M., Khyzhniak A., Orlenko T. (2024). Simulation of the vulnerability of the steppe landscape and climate zone of Ukraine to climate changes based on space image data. Ukrainian journal of remote sensing, 1(11), 32—40.
11. Lyubskyi M., Khyzhniak A., Orlenko T. (2024). Simulation of the vulnerability of the steppe landscape and climate zone of Ukraine to climate changes based on space image data. Ukrainian journal of remote sensing, 1(11), 32—40.
https://doi.org/10.36023/ujrs.2024.11.1.258 [In Ukrainian]
12. Mahanta A. R., Rawat K. S., Kumar N., Szabo S., Srivastava P. K., Singh S. K. (2024). Assessment of multi-source satellite products using hydrological modelling approach. Phys. Chem. Earth. A/B/C/, 133, 103507.
12. Mahanta A. R., Rawat K. S., Kumar N., Szabo S., Srivastava P. K., Singh S. K. (2024). Assessment of multi-source satellite products using hydrological modelling approach. Phys. Chem. Earth. A/B/C/, 133, 103507.
13. Mallick K., Verfaillie J., Wang T., Ortiz A. A., Szutu D., Yi K., Kang Y., Shortt R., Hu T., Sulis M., Szantoi Z., Gilles B., Fisher J. B., Baldocchi D. (2024). Net fluxes of broadband shortwave and photosynthetically active radiation complement NDVI and near infrared reflectance of vegetation to explain gross photosynthesis variability across ecosystems and climate. Remote Sens. Environ., 307, 114123.
https://doi.org/10.1016/j.rse.2024.114123
14. Mardani A., Jusoh A. (2015). The use of ELECTRE method in remote sensing for assessing land degradation. Sustainability 7(3), 2665—2675.
15. Mishra A., Vu T., Veettil A. V., Entekhabi D. (2017). Drought monitoring with soil moisture active passive (SMAP) measurements J. Hydrol., 552, 620—632.
14. Mardani A., Jusoh A. (2015). The use of ELECTRE method in remote sensing for assessing land degradation. Sustainability 7(3), 2665—2675.
15. Mishra A., Vu T., Veettil A. V., Entekhabi D. (2017). Drought monitoring with soil moisture active passive (SMAP) measurements J. Hydrol., 552, 620—632.
https://doi.org/10.1016/j.jhydrol.2017.07.033
16. O’Leary D. P. (1990). Robust regression computation using iteratively reweighted least squares. SIAM J. Matrix Anal. Appl., 11(3), 466—480.
16. O’Leary D. P. (1990). Robust regression computation using iteratively reweighted least squares. SIAM J. Matrix Anal. Appl., 11(3), 466—480.
https://doi.org/10.1080/03610927708827533
17. Opricovic S., Tzeng G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res., 156(2), 445—455.
17. Opricovic S., Tzeng G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res., 156(2), 445—455.
https://doi.org/10.1016/S0377-2217(03)00020-1
18. Patil P. P., Jagtap M. P., Khatri N., Madan H., Vadduri A. A., Patodia T. (2024). Exploration and advancement of NDDI leveraging NDVI and NDWI in Indian semi-arid regions: A remote sensing-based study. Case Stud. Chem. Environ. Eng., 9, 100573.
18. Patil P. P., Jagtap M. P., Khatri N., Madan H., Vadduri A. A., Patodia T. (2024). Exploration and advancement of NDDI leveraging NDVI and NDWI in Indian semi-arid regions: A remote sensing-based study. Case Stud. Chem. Environ. Eng., 9, 100573.
https://doi.org/10.1016/j.cscee.2023.100573
19. Roy B. (1968). Classement et choix en présence de points de vue multiples. RAIRO Oper. Res., 2(8), 57—75 [In French] 20. Saaty T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.
21. Saaty T. L. (1990). How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res., 48(1), 9—26.
19. Roy B. (1968). Classement et choix en présence de points de vue multiples. RAIRO Oper. Res., 2(8), 57—75 [In French] 20. Saaty T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.
21. Saaty T. L. (1990). How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res., 48(1), 9—26.
https://doi.org/10.1016/0377-2217(90)90057-I
22. Saaty T. L., Opricovic S. (2006). Application of VIKOR method in remote sensing for environmental impact assessment. Remote Sens. Environ., 110(1), 47—59.
23. United Nations Department of Economic and Social Affairs (2024). Global Set of Climate Change Statistics and Indicators Implementation Guidelines. United Nations. New York. ISBN: 978-92-1-101486-0.
24. Wang X., Luo H. (2020). Multicriteria decision-making techniques for environmental impact assessment: AHP in remote sensing. J. Environ. Manage., 264, 110471.
22. Saaty T. L., Opricovic S. (2006). Application of VIKOR method in remote sensing for environmental impact assessment. Remote Sens. Environ., 110(1), 47—59.
23. United Nations Department of Economic and Social Affairs (2024). Global Set of Climate Change Statistics and Indicators Implementation Guidelines. United Nations. New York. ISBN: 978-92-1-101486-0.
24. Wang X., Luo H. (2020). Multicriteria decision-making techniques for environmental impact assessment: AHP in remote sensing. J. Environ. Manage., 264, 110471.
https://doi.org/10.3390/w15071344
25. Zadeh L. A. (1965). Fuzzy sets. Inform. and Control, 8(3), 338—353.
26. Zhao S., Liu M., Tao M., Zhou W., Lu X., Xiong Y., Feng L., Wang Q. (2023). The role of satellite remote sensing in mitigating and adapting to global climate change. Sci. Total Environ., 904, 166820.
25. Zadeh L. A. (1965). Fuzzy sets. Inform. and Control, 8(3), 338—353.
26. Zhao S., Liu M., Tao M., Zhou W., Lu X., Xiong Y., Feng L., Wang Q. (2023). The role of satellite remote sensing in mitigating and adapting to global climate change. Sci. Total Environ., 904, 166820.
https://doi.org/10.1016/j.scitotenv.2023.166820
27. Zhou X., Wang P., Tansey K., Zhang S., Li H., Wang L. (2020). Developing a fused vegetation temperature condition index for drought monitoring at field scales using Sentinel-2 and MODIS imagery. Computers and Electronics in Agriculture, 168, 105144.
27. Zhou X., Wang P., Tansey K., Zhang S., Li H., Wang L. (2020). Developing a fused vegetation temperature condition index for drought monitoring at field scales using Sentinel-2 and MODIS imagery. Computers and Electronics in Agriculture, 168, 105144.
https://doi.org/10.1016/j.compag.2019.105144
28. Zhou Y., Sachs T., Li Z., Pang Y., Xu J., Kalhori A., Wille C., Peng X., Fu X., Wu Y., Wu L. (2023). Long-term effects of rewetting and drought on GPP in a temperate peatland based on satellite remote sensing data. Sci. Total Environ., 882, 163395.
28. Zhou Y., Sachs T., Li Z., Pang Y., Xu J., Kalhori A., Wille C., Peng X., Fu X., Wu Y., Wu L. (2023). Long-term effects of rewetting and drought on GPP in a temperate peatland based on satellite remote sensing data. Sci. Total Environ., 882, 163395.
