Development of a comprehensive mathematical model of the dimensional and mass characteristics of a solid propellant missile
Heading:
| 1Bondarenko, MO, 1Vorobei, MM 1Oles Honchar Dnipro National University, Dnipro, Ukraine |
| Space Sci. & Technol. 2025, 31 ;(6):003-013 |
| https://doi.org/10.15407/knit2025.06.003 |
| Publication Language: English |
Abstract: This paper presents a modular mathematical model for preliminary assessment of the dimensional and mass characteristics of a tactical solid-propellant rocket. The model determines overall length and initial mass from key design parameters (propellant load, fill factor, maximum casing diameter) and structural/geometric constraints, and covers metallic, hybrid, and filament-wound composite casings as well as alternative igniter mounting options. Dimensional limits (notably overall length) produce a transcendental relation requiring iterative solution; the method incorporates input uncertainties and enables rapid comparison of multiple design configurations for preliminary optimization and early design decisions.
|
| Keywords: Composite casing, Dimensional and mass characteristics, Igniter system, mathematical modeling, Preliminary missile design, Solid-propellant rocket motor, Structural optimization, Tactical missile |
Full text (PDF)
References:
1. Akyuzlu, K., Antoniou, A., & Martin, M. (2002, July). Determination of regression rate in an ablating hybrid rocket solid fuel using a physics based comprehensive mathematical model. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 3577).https://doi.org/10.2514/6.2002-3577
2. Antoniou, A. (2005). A physics-based two-dimensional comprehensive mathematical model to predict non-uniform regression rate in solid fuels for hybrid rocket motors.PhD thesis, Department of Mechanical Engineering, University of New Orleans.
3. Belov, G. V., Zonshain, S. I., &Oskerko, A. P. (1974). Principles of rocket design. M:Mashinostroenie.
4. Bondarenko, M., Habrinets, V., &Vorobei, M. (2024). Evolution of Multiple Launch Rocket Systems from Early Rockets to HIMARS and Beyond. Challenges and Issues of Modern Science, 3, 23–34. https://cims.fti.dp.ua/j/article/view/241
5. Bondarenko, M., Gabrinets, V., &Vorobei, M. (2025). ACTIVE PROTECTION SYSTEMS AGAINST PRECISION WEAPONS AND THEIR PROSPECTS. Journal of Rocket-Space Technology, 34(2), 103-111. https://doi.org/10.15421/452519
6. Dinesh Kumar, B., Nayana, B. S., & Shree, D. S. (2016). Design and structural analysis of solid rocket motor casing hardware used in aerospace applications. Journal of Aeronautics & Aerospace Engineering, 5(2), 1-7.https://doi.org/10.4172/2168-9792.1000166
7. Humbert, N. S., Paquin, J. D., Cea, B., Lewis, C. M., McQueen, C., McDonald, N., ... &Galliand, C. (2021). Development of Solid Rocket Igniter System for Turn-Key Space Access. In AIAA Propulsion and Energy 2021 Forum (p. 3691).https://doi.org/10.2514/6.2021-3691
8. Kamran, A., &Guozhu, L. (2012). An integrated approach for optimization of solid rocket motor. Aerospace Science and Technology, 17(1), 50-64.https://doi.org/10.1016/j.ast.2011.03.006
9. Krejčíř, F., Buldra, R., & Konečný, P. (2021, June). Ignition of Small Rocket Motor Using Black Powder Igniters. In 2021 International Conference on Military Technologies (ICMT) (pp. 1-8). IEEE.https://doi.org/10.1109/ICMT52455.2021.9502780
10. Krishnan, S., & Raghavan, J. (2019). Chemical rockets: performance prediction and internal ballistics design.Springer (Springer Aerospace Technology).https://doi.org/10.1007/978-3-030-26965-4
11. Mishra, D. P. (2017). Fundamentals of rocket propulsion.Boca Raton: CRC Press, Taylor & Francis Group, 461 pp.https://doi.org/10.1201/9781315175997
12. Miller, W. H. (1971). Solid rocket motor performance analysis and prediction.NASA Monograph SP-8039, May 1971. 106 p.
13. Muhammad, M. A., & Salleh, N. A. (2021). Thermal Analysis on Solid Rocket Motor Casing.Int. Trans. J. Eng. Manag. Appl. Sci. Technol., 12(9). https://doi.org/10.14456/ITJEMAST.2021.189
14. Niharika, B. B. V. B., & Varma, B. B. (2018, December). Design and analysis of composite rocket motor casing. In IOP Conference Series: Materials Science and Engineering (Vol. 455, No. 1, p. 012034). IOP Publishing.https://doi.org/10.1088/1757-899X/455/1/012034
15. Nordvall, F. (2025). A CFD Analysis of Thrust Losses in a Solid Rocket Motor Nozzle. Umeå University, Department of Physics.
16. Reddy, G. S., & Rani, V. Y. (2021, July). Design and analysis of a solid rocket motor fabricated with MDN-250. In AIP Conference Proceedings (Vol. 2358, No. 1, p. 050016). AIP Publishing LLC.https://doi.org/10.1063/5.0057924/
17. Rozhkov, V. V. (1973). Engines of Solid Fuel Rockets (Report No. FTDMT24145472).https://apps.dtic.mil/sti/html/tr/AD0755411
18. Salleh, Z., Hamid, A. H. A., Mohammad, W. M. W., Tamimi, A., Sujana, M. J., & Ahmad, K. A. (2021). Chemical composition of igniter for ignition system in solid rocket motor. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(9), 1-11. https://tuengr.com/V12/12A9P.pdf
19. Shapiro, Y. M., Mazing, G. Y., & Prudnikov, N. E. (1969). Principles of Solid-Fuel Rocket Design (No. FTDHT2326869 (JPRS)).Technical Report/Monograph. https://apps.dtic.mil/sti/html/trecms/AD0701235/
20. Sinyukov, A. M., & Morozov, N. I. (1970). Design of Guided Ballistic Missiles (Report No. FTDMT241070).https://apps.dtic.mil/sti/html/tr/AD0711130/
21. Skiba, R. (2024). Rocket Design and Construction Fundamentals. After Midnight Publishing. 462 p. https://books.google.com.ua/books?id=fFI5EQAAQBAJ
22. Srivastava, L., Krishnanand, L., Behera, S., & Nath, N. K. (2022). Failure mode effect analysis for a better functional composite rocket motor casing. Materials Today: Proceedings, 62, 4445-4454.https://doi.org/10.1016/j.matpr.2022.04.933
23. Teja, S. A. R. I. Y. A. M., & Subramanyam, B. (2019). Design and analysis of composite rocket motor casing. International Journal of Mechanical and Production Engineering Research and Development, 9(6), 233-250.https://surl.lu/zkovyf
24. Tizón, J. M., & Barredo, A. M. (2024). Combustion Instabilities in Complex Chamber Geometries of Solid Propellant Rocket Motors.ArXiv preprint. https://doi.org/10.48550/arXiv.2411.08731
25. Vorobei, M., & Bondarenko, M. (2024). Design and Optimization of a Hybrid Gas Generator for Hydrogen Peroxide Tank Pressurization. Challenges and Issues of Modern Science, 3, 35-47.https://cims.fti.dp.ua/j/article/view/243
26. Yang, H., Wang, X., Zheng, S., Xu, M., & Li, X. (2024). Prediction of solid rocket motor performance based on deep learning and ignition experimental data. IEEE Transactions on Aerospace and Electronic Systems, 60(5), 6241-6255.http://doi.org/10.1109/TAES.2024.3401670
