CubeSats and their on-board computers: Systematic literature review

1Liubimov, OV, 1TurkinI., IB
1National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukrain
Space Sci. & Technol. 2025, 31 ;(6):014-037
https://doi.org/10.15407/knit2025.06.014
Publication Language: English
Abstract: 
CubeSats have revolutionized the exploration and utilization of near-space environments, particularly in low-earth orbit. In this
study, we present a systematic review of the current literature to identify and discuss the main developments, research circle, and advancements in the development of nanosatellite avionics, with a focus on onboard computers, covering both hardware and software aspects. A systematic literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Out of the 647 articles extracted from Science Direct and IEEE, 202 studies were selected based on rigorous inclusion and exclusion criteria, revealing six major thematic areas in nanosatellite design and operation. The findings are organizedinto six subsections that address the most frequently discussed items in designing, developing, and operating nanosatellites. The listof topics begins with the onboarding of the mission’s analysis and overview and continues with the review of hardware and software solutions for the onboard computers, their architecture and reliability assessment, and the system engineering surrounding them. The review concludes with two applied directions for telemetry and communication, as well as the use of machine learning onboard nanosatellites.
             According to the results, CubeSat research and development continue growing rapidly, leveraging modern embedded technology advancements. The availability, robustness, and high integration level of commercial off-the-shelf components have brought graphics processing units, field-programmable gate arrays, and multi-core computing systems into space. These powerful and energy-efficient computers, reinforced by modern machine learning models, enable the rapid and reliable development of complex, sophisticated missions. Finally, the conclusions highlight the major findings, potential future trends, and research topics in the field. Ultimately, this article serves as a comprehensive guide for scientists, developers, integrators, and enthusiasts engaged in space technology research and development.
Keywords: AI, Command and Data Handling Module, COTS, CubeSat, hardware, machine learning, nanosatellites, On-Board Computer, reliability, software, system engineering, systematic literature review
References: 
1. Abedrabbo J.P., Asundi S.  IEEE Aerospace Conference, Mar. 2024, pp. 1–21. doi: 10.1109/AERO58975.2024.10521404.
2. Abegaonkar M.P., Basu A.  IEEE Journal on Miniaturization for Air and Space Systems, vol. 3, no. 4, pp. 221–231, Dec. 2022, doi: 10.1109/JMASS.2022.3209897.
3. Access the IEEE Thesaurus. Accessed: Mar. 03, 2025. [Online]. Available: https://www.ieee.org/publications/services/thesaurus-access-page.html
4. Adams C., Spain A., Parker J., Hevert M., Roach J. IEEE Aerospace Conference, Mar. 2019, pp. 1–7. doi: 10.1109/AERO.2019.8741765.
5. Ahmadi A., Kosari A., Malaek S.M.B.  IEEE Aerospace and Electronic Systems Magazine, vol. 33, no. 2, pp. 34–51, Feb. 2018, doi: 10.1109/MAES.2018.170052.
6. Akhoury A., Birla K., Sarkar R., Ravi A., Kalsi S., Ghorai S. IEEE Aerospace Conference, Mar. 2019, pp. 1–9. doi: 10.1109/AERO.2019.8742184.
7. Akyüz M.S., Yayan S.M., Duman O., et al. IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Sep. 2023, pp. 387–392. doi: 10.1109/MeditCom58224.2023.10266631.
8. Alanazi A., Jones A.B., Straub J.  IEEE AUTOTESTCON, Aug. 2019, pp. 1–6. doi: 10.1109/AUTOTESTCON43700.2019.8961058.
9. Alandihallaj M.A., Emami M.R.Acta Astronautica, vol. 196, pp. 157–175, Jul. 2022, doi: 10.1016/j.actaastro.2022.04.014.
10. Alandihallaj M.A., Hein A.M. Acta Astronautica, vol. 223, pp. 58–76, Oct. 2024, doi: 10.1016/j.actaastro.2024.06.050.
11. Albalooshi A., Jallad A.-H.M., Marpu P.R.  IEEE Access, 11, 34709–34717. doi: 10.1109/ACCESS.2023.3262410.
12. Alhammadi Mahool, Svetinovic Davor.  XXVI International Conference on Information, Communication and Automation Technologies (ICAT), Oct. 2017, pp. 1–6. doi: 10.1109/ICAT.2017.8171623.
13. Ali F.Z., Jusoh M.H., Ilagan L.C.  IEEE 16th Malaysia International Conference on Communication (MICC), Dec. 2023, pp. 1–5. doi: 10.1109/MICC59384.2023.10419435.
14. Allam Aisha K. El, Abdul-Halim M. Jallad, Awad Mohammed, et al. IEEE Access, vol. 9, pp. 107791–107803, 2021, doi: 10.1109/ACCESS.2021.3097537.
15. Alonso A., Puente J.A., De Ia Zamorano J., et al, IFAC-PapersOnLine, vol. 48, no. 10, pp. 240–245, Jan. 2015, doi: 10.1016/j.ifacol.2015.08.138.
16. Antonello F., Segneri D., Eggleston J.  Advances in Space Research, vol. 74, no. 11, pp. 5923–5933, Dec. 2024, doi: 10.1016/j.asr.2024.08.059.
17. Anyanhun I., Edmonson W.W. “An MBSE conceptual design phase model for inter-satellite communication,” in 2018 Annual IEEE International Systems Conference (SysCon), Apr. 2018, pp. 1–8. doi: 10.1109/SYSCON.2018.8369575.
18. Arechiga P., Michaels A.J., Black J.T.  NAECON 2018 - IEEE National Aerospace and Electronics Conference, Jul. 2018, pp. 234–240. doi: 10.1109/NAECON.2018.8556744.
19. Arribas M. J., Hellín A. M., Prieto M, del Río I. G., Gallego A. F., et al. Microprocessors and Microsystems, vol. 112, p. 105132, Feb. 2025, doi: 10.1016/j.micpro.2024.105132.
20. Austin A., Nash A. IEEE Aerospace Conference (AERO), Mar. 2022, pp. 1–7. doi: 10.1109/AERO53065.2022.9843442.
21. Austin R.A., Mahadevan N., Witulski A.F., Evans J., Witulski A.F., Annual Reliability and Maintainability Symposium (RAMS), Jan. 2018, pp. 1–5. doi: 10.1109/RAM.2018.8463043.
22. Bakken S., Birkeland R., Garrett J.L., Marton P.A.R., Orlandić M., et al., IEEE/SICE International Symposium on System Integration (SII), Jan. 2022, pp. 258–264. doi: 10.1109/SII52469.2022.9708802.
23. Bakyt M., Spada L.L., Moldamurat K., Kadirbek Z., Yermekov F. 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Dec. 2024, pp. 1366–1375. doi: 10.1109/ICUIS64676.2024.10867245.
24. Barnes P., Murawski R.IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Jun. 2019, pp. 1–7. doi: 10.1109/CCAAW.2019.8904897.
25. Barschke M.F., Jonglez C., Werner P., von Keiser P., Gordon K., et al. Acta Astronautica, vol. 167, pp. 108–116, Feb. 2020, doi: 10.1016/j.actaastro.2019.10.034.
26. Bellome A., Nakhaee-Zade A., Prous G.Z., Coyleet M., D'Souza S., Mummigatti S., Serfontein Z. IEEE Aerospace Conference (50100), Mar. 2021, pp. 1–19. doi: 10.1109/AERO50100.2021.9438417.
27. Bentoutou Y., Bensikaddour E.-H. Advances in Space Research, vol. 55, no. 12, pp. 2820–2832, Jun. 2015, doi: 10.1016/j.asr.2015.02.032.
28. Berthet M., Nakasuka S., Cho M., Suzuki K. (2024). Country-first domestic satellites: A family tree. Progress in Aerospace Sci., 146, 100997. doi: 10.1016/j.paerosci.2024.100997.
29. Bettany-Saltikov J. “Learning how to undertake a systematic review: part 1,” Nursing Standard, vol. 24, no. 50, pp. 47–55, Aug. 2010, doi: 10.7748/ns2010.08.24.50.47.c7939.
30. Bezerra F., Mekki J., Augustin G., Guillermin J., Chatry N.  21th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Sep. 2021, pp. 1–6. doi: 10.1109/RADECS53308.2021.9954468.
31. Bi Z., Yung K.L., Ip A.W.H., Tang Y.M., Zhang C.W.J., Xu L.D.  IEEE Access, 10, 110110–110135. doi: 10.1109/ACCESS.2022.3215154.
32. Bleier J., Mubarik M.H., Swenson G.R., Kumar R. 56th IEEE/ACM International Symposium on Microarchitecture (MICRO), Nov. 2023, pp. 900–915.
33. Bourke J., Udrea B., Nayak M. “Pirarucu: The Mars moon prospector,” in 2016 IEEE Aerospace Conference, Mar. 2016, pp. 1–8. doi: 10.1109/AERO.2016.7500686.
34. Bouwmeester J., van der Linden S.P., Povalac A., Gill E.K.A. “Towards an innovative electrical interface standard for PocketQubes and CubeSats,” Advances in Space Research, vol. 62, no. 12, pp. 3423–3437, Dec. 2018, doi: 10.1016/j.asr.2018.03.040.
35. Brown M., Dey S., Tuxworth G., Co J., Bernus P., de Souza P. (2022). An Ility Calculation for Satellite Software Validation. IEEE Aerospace Conf. (AERO), 1–20. doi: 10.1109/AERO53065.2022.9843603.
36. Buck C. “Cubesat Constellation Concepts for Swath Altimetry,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Aug. 2019, pp. 8429–8432. doi: 10.1109/IGARSS.2019.8898067.
37. Busch P., Bangert S., Dombrovski S., Schilling K. “UWE-3, in-orbit performance and lessons learned of a modular and flexible satellite bus for future pico-satellite formations,” Acta Astronautica, vol. 117, pp. 73–89, Dec. 2015, doi: 10.1016/j.actaastro.2015.08.002.
38. Cabral Pimentel de Melo Ana Carolina, Café D.C., Borges A.R. “Assessing Power Efficiency and Performance in Nanosatellite Onboard Computer for Control Applications,” IEEE Journal on Miniaturization for Air and Space Systems, vol. 1, no. 2, pp. 110–116, Sep. 2020, doi: 10.1109/JMASS.2020.3009835.
39. Cabral Pimentel de Melo Ana Carolina, Guimarães F.C., Honda Y.H.M., Borges R.A., Haddad S.A.P., et al., “Design Analysis of a New On-Board Computer for the LAICAnSat Platform,” in 2019 IEEE Aerospace Conference, Mar. 2019, pp. 1–8. doi: 10.1109/AERO.2019.8742140.
40. Campioli S., Stesina F., La Bella E., Corpino S., Niero L., My C. “Concurrent Engineering to Enhance Autonomy for Deep-Space CubeSat Mission Design,” IFAC-PapersOnLine, vol. 58, no. 16, pp. 163–168, Jan. 2024, doi: 10.1016/j.ifacol.2024.08.480.
41. Campos J., Ferguson P.  IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Sep. 2020, pp. 1–4. doi: 10.1109/CCECE47787.2020.9255722.
42. Carvalho A., de Azevedo M.S., de Souza S.C.M., et al.  IFAC-PapersOnLine, vol. 49, no. 30, pp. 71–74, Jan. 2016, doi: 10.1016/j.ifacol.2016.11.128.
43. Castro M., Straub J. IEEE Aerospace Conference, Mar. 2015, pp. 1–7. doi: 10.1109/AERO.2015.7119266.
44. Cech M., Januska M. Journal of Space Safety Engineering, vol. 11, no. 1, pp. 102–110, Mar. 2024, doi: 10.1016/j.jsse.2023.11.008.
45. Chaieb S., Wegerson M., Kading B., Straub J., Marsh R., Whalen D. “The OpenOrbiter CubeSat as a system-of-systems (SoS) and how SoS engineering (SoSE) Aids CubeSat design,” in 2015 10th System of Systems Engineering Conference (SoSE), May 2015, pp. 47–52. doi: 10.1109/SYSOSE.2015.7151937.
46. Chanoui Mohammed Alae, El wafi Ilyas, Khalil Imane, et al. Results in Engineering, vol. 24, p. 103324, Dec. 2024, doi: 10.1016/j.rineng.2024.103324.
47. Chintalapati B., Precht A., Hanra S., Laufer R., Liwicki M., Eickhoff J.  Advances in Space Research, Mar. 2024, doi: 10.1016/j.asr.2024.03.053.
48. Clark L., Tung Y.-C., Clark M., Zapanta L.  IEEE Aerospace Conference, Mar. 2020, pp. 1–8. doi: 10.1109/AERO47225.2020.9172516.
49. Conceicao A.P.L., Mattiello-Francisco F., Batista C.L.G. Seventh Latin-American Symposium on Dependable Computing (LADC), Oct. 2016, pp. 157–163. doi: 10.1109/LADC.2016.33.
50. Cornejo O., Pastore F., Briand L.C. IEEE Transactions on Software Engineering, vol. 48, no. 10, pp. 3913–3939, Oct. 2022, doi: 10.1109/TSE.2021.3107680.
51. Corpino S., Obiols-Rabasa G., Mozzillo R., Nichele F. “E-st@r-I experience: Valuable knowledge for improving the e-st@r-II design,” Acta Astronautica, vol. 121, pp. 13–22, Apr. 2016, doi: 10.1016/j.actaastro.2015.12.027.
52. Crane J., Brownlow L. “Optimization of multi-satellite systems using integrated Model Based System Engineering (MBSE) techniques,” in 2015 Annual IEEE Systems Conference (SysCon) Proceedings, Apr. 2015, pp. 206–211. doi: 10.1109/SYSCON.2015.7116753.
53. Cratere L., Gagliardi G.A., Sanca F., Golmar F., Dell’Olio F. “On-Board Computer for CubeSats: State-of-the-Art and Future Trends,” IEEE Access, vol. 12, pp. 99537–99569, 2024, doi: 10.1109/ACCESS.2024.3428388.
54. Creech S.D. “NASA’s Space Launch System: Enabling a New Generation of Lunar Exploration,” in 2019 IEEE Aerospace Conference, Mar. 2019, pp. 1–11. doi: 10.1109/AERO.2019.8741972.
55. CubeSat Launch Initiative Resources - NASA. Accessed: Mar. 01, 2025. [Online]. Available: https://www.nasa.gov/kennedy/launch-services-program/cubesat-launch-init...
56. Dalbins J., Allaje K., Iakubivskyi I., Kivastik J., Komarovskis R.O., et al., “ESTCube-2: The Experience of Developing a Highly Integrated CubeSat Platform,” in 2022 IEEE Aerospace Conference (AERO), Mar. 2022, pp. 1–16. doi: 10.1109/AERO53065.2022.9843521.
57. De Almeida Danilo Pallamin, Bence Graics, Chagas Ronan Arraes Jardim, De Sousa Fabiano Luis, Mattiello-Francisco Fatima. “Towards Simulation of CubeSat Operational Scenarios under a Cyber-Physical Systems View,” in 2021 10th Latin-American Symposium on Dependable Computing (LADC), Nov. 2021, pp. 1–4. doi: 10.1109/LADC53747.2021.9672594.
58. De la Vega-Martínez M., Velázquez-García M.C., Zavala-López M.F., Hernández E., Gutiérrez-Esparza R.A., Arcos-Bravo D.G., Medina D., Gilardi-Velázquez H.E., McComas D.“Implementation of the cFS framework for the development of software in aerospace missions: first application in an undergraduate program in Mexico,” IFAC-PapersOnLine, vol. 54, no. 12, pp. 88–93, Jan. 2021, doi: 10.1016/j.ifacol.2021.11.014.
59. De Luca Visioli F., Pazelli Tatiana F.P.A.T. “Computer Vision for Space Robotics: CubeSat Detection and Tracking with OpenCV,” in 2024 Brazilian Symposium on Robotics (SBR) and 2024 Workshop on Robotics in Education (WRE), Nov. 2024, pp. 150–155. doi: 10.1109/SBR/WRE63066.2024.10837879.
60. De Souza Koffi V.C.K., Bouslimani Y., Ghribi M. “Flight Software Development for a CubeSat Application,” IEEE Journal on Miniaturization for Air and Space Systems, vol. 3, no. 4, pp. 184–196, Dec. 2022, doi: 10.1109/JMASS.2022.3206713.
61. De Souza Koffi V.C.K., Bouslimani Y., Ghribi M., Boutot T. “On-Board Computer and Testing Platform for CubeSat Development,” IEEE Journal on Miniaturization for Air and Space Systems, vol. 4, no. 2, pp. 199–211, Jun. 2023, doi: 10.1109/JMASS.2023.3250581.
62. Del Castillo M., Morgan J., McRobbie J., Therakam C., Joukhadar Z., et al., “Mitigating Challenges of the Space Environment for Onboard Artificial Intelligence: Design Overview of the Imaging Payload on SpIRIT,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2024, pp. 6789–6798. doi: 10.1109/CVPRW63382.2024.00672.
63. Dhanaraj N., Narayan S.V., Nikolaidis S., Gupta S.K. “Contingency-Aware Task Assignment and Scheduling for Human-Robot Teams,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), Jun. 2023, pp. 5765–5771. doi: 10.1109/ICRA48891.2023.10160806.
64. Di Mascio S., Menicucci A., Furano G., Szewczyk T., Campajola L., et al., “Towards defining a simplified procedure for COTS system-on-chip TID testing,” Nuclear Engineering and Technology, vol. 50, no. 8, pp. 1298–1305, Dec. 2018, doi: 10.1016/j.net.2018.07.010.
65. Di Mascio S., Menicucci A., Gill E., Furano G., Monteleone C. “Open-source IP cores for space: A processor-level perspective on soft errors in the RISC-V era,” Computer Science Review, vol. 39, p. 100349, Feb. 2021, doi: 10.1016/j.cosrev.2020.100349.
66. Di Roberto R., Brandolini E., Sparvieri G., Graziani F. “Best practices on adopting open-source and commercial low-cost devices in nanosatellite missions,” Acta Astronautica, vol. 211, pp. 37–48, Oct. 2023, doi:10.1016/j.actaastro.2023.06.001.
67. Driouch O., Bah S., Guennoun Z. “CANSat-IDS: An adaptive distributed Intrusion Detection System for satellites, based on combined classification of CAN traffic,” Computers & Security, vol. 146, p. 104033, Nov. 2024, doi: 10.1016/j.cose.2024.104033.
68. Dussy S., Preaud J.-P., Malucchi G., Marco V., Zaccagnino E., Drocco A. “Intermediate eXperimental Vehicle (IXV), the ESA Re-entry Demonstrator,” in AIAA Guidance, Navigation, and Control Conference, Portland, Oregon: American Institute of Aeronautics and Astronautics, Aug. 2011. doi: 10.2514/6.2011-6340.
69. Elsedfy M.O., Murtada W.A., Abdulqawi E.F., Gad-Allah M. “A real-time virtual machine for task placement in loosely-coupled computer systems,” Heliyon, vol. 5, no. 6, p. e01998, Jun. 2019, doi: 10.1016/j.heliyon.2019.e01998.
70. Erlank O., Bridges C.P. “Reliability analysis of multicellular system architectures for low-cost satellites,” Acta Astronautica, vol. 147, pp. 183–194, Jun. 2018, doi: 10.1016/j.actaastro.2018.04.006.
71. Eshaq M., Al-Midfa I., Al-Shamsi Z., Atalla S., Al-Mansoori S., Al-Ahmad H. “Flight Software Design and Implementation for a CubeSat,” in 2023 Advances in Science and Engineering Technology International Conferences (ASET), Feb. 2023, pp. 1–6. doi: 10.1109/ASET56582.2023.10180675.
72. Essoumati S., Said A.O., Gharnati F., Raoufi M. “Exploring the Frontiers: An In-Depth Study on Nanosatellites as the Pinnacle of Embedded Systems in Space Technology,” in 2024 International Conference on Global Aeronautical Engineering and Satellite Technology (GAST), Apr. 2024, pp. 1–5. doi: 10.1109/GAST60528.2024.10520782.
73. Fernando P., Wei-Kocsis J. “Towards a Disaster Response System Based on CubeSat Constellations,” in 2021 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Jun. 2021, pp. 1–6. doi: 10.1109/CCAAW50069.2021.9527302.
74. Frei M., Burri M., Rems F., Risse E.-A. “A robust navigation filter fusing delayed measurements from multiple sensors and its application to spacecraft rendezvous,” Advances in Space Research, vol. 72, no. 7, pp. 2874–2900, Oct. 2023, doi: 10.1016/j.asr.2022.10.025.
75. Fritz M., Winter S., Freund J., Pflueger S., Zeile O., Eickhoff J., Roeser H.-P., et al., “Hardware-in-the-loop environment for verification of a small satellite’s on-board software,” Aerospace Science and Technology, vol. 47, pp. 388–395, Dec. 2015, doi: 10.1016/j.ast.2015.09.020.
76. Fuchs C.M., Chou P., Wen X., Murillo N.M., Furano G., et al., “A Fault-Tolerant MPSoC For CubeSats,” in 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct. 2019, pp. 1–6. doi: 10.1109/DFT.2019.8875417.
77. Fuchs C.M., Murillo N.M., Plaat A., van der Kouwe E., Stefanov T. (2018). Dynamic Fault Tolerance Through Resource Pooling. NASA/ESA Conf. on Adaptive Hardware and Systems (AHS), 9–16. doi: 10.1109/AHS.2018.8541457.
78. Fuchs Christian M., Murillo Nadia M., Plaat Aske, Van der Kouwe Erik, Harsono Daniel, Stefanov Todor P. “Fault-Tolerant Nanosatellite Computing on a Budget,” in 2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Sep. 2018, pp. 1–8. doi: 10.1109/RADECS45761.2018.9328685.
79. Fuchs Christian M., Murillo Nadia M., Plaat Aske, Van der Kouwe Erik, Wang Peng. “Towards Affordable Fault-Tolerant Nanosatellite Computing with Commodity Hardware,” in 2018 IEEE 27th Asian Test Symposium (ATS), Oct. 2018, pp. 127–132. doi: 10.1109/ATS.2018.00034.
80. Gadisa D. “Analysis of ETRSS-1 on-orbit performance and anomaly management,” Journal of Space Safety Engineering, vol. 10, no. 4, pp. 483–494, Dec. 2023, doi: 10.1016/j.jsse.2023.08.006.
81. Garzaniti N., Briatore S., Fortin C., Golkar A. “Effectiveness of the Scrum Methodology for Agile Development of Space Hardware,” in 2019 IEEE Aerospace Conference, Mar. 2019, pp. 1–8. doi: 10.1109/AERO.2019.8741892.
82. Garzaniti N., Golkar A. “Performance Assessment of Agile Hardware Co-development Process,” in 2020 IEEE International Symposium on Systems Engineering (ISSE), Nov. 2020, pp. 1–6. doi: 10.1109/ISSE49799.2020.9272209.
83. Ge X., Gao W., Xue F., Zhao C., Zhao Y., et al., “Total-ionization-dose characterization of a radiation-hardened mixed-signal microcontroller SoC in 180nm CMOS technology for nanosatellites,” Microelectronics Journal, vol. 87, pp. 65–72, May 2019, doi: 10.1016/j.mejo.2019.04.00.
84. Gebreyohannes S., Karimoddini A., Homaifar A. “Applying Model-Based Systems Engineering to the Development of a Test and Evaluation Tool for Unmanned Autonomous Systems,” in 2020 IEEE International Systems Conference (SysCon), Sep. 2020, pp. 1–7. doi: 10.1109/SysCon47679.2020.9275894.
85. George A.D., Wilson C.M. “Onboard Processing With Hybrid and Reconfigurable Computing on Small Satellites,” Proceedings of the IEEE, vol. 106, no. 3, pp. 458–470, Mar. 2018, doi: 10.1109/JPROC.2018.2802438.
86. Gomes Batista Carlos Leandro, Weller Anderson Coelho, Martins Eliane, De Fátima Mattiello-Francisco Maria. “Towards increasing nanosatellite subsystem robustness,” Acta Astronautica, vol. 156, pp. 187–196, Mar. 2019, doi: 10.1016/j.actaastro.2018.11.011.
87. Gomes Batista Carlos Leandro, Martins Eliane, De Fátima Mattiello-Francisco Maria. “On the use of a failure emulator mechanism at nanosatellite subsystems integration tests,” in 2018 IEEE 19th Latin-American Test Symposium (LATS), Mar. 2018, pp. 1–6. doi: 10.1109/LATW.2018.8347242.
88. Gonzalez Carlos E., Bergel Alexandre, Diaz Marcos A. “Nanosatellite constellation control framework using evolutionary contact plan design,” in 2021 IEEE 8th International Conference on Space Mission Challenges for Information Technology (SMC-IT), Jul. 2021, pp. 85–92. doi: 10.1109/SMC-IT51442.2021.00018.
89. Gonzalez Carlos E., Rojas Camilo J., Bergel Alexandre, Diaz Marcos A. “An Architecture-Tracking Approach to Evaluate a Modular and Extensible Flight Software for CubeSat Nanosatellites,” IEEE Access, vol. 7, pp. 126409–126429, 2019, doi: 10.1109/ACCESS.2019.2927931.
90. González M., Gilardi-Velázquez H.E., Gutiérrez S., Ruíz-Martínez O.F. “Time Management of Modes of Operation for Survival of a Satellite Mission: Power Simulation in MATLAB and STK,” IFAC-PapersOnLine, vol. 54, no. 12, pp. 74–79, Jan. 2021, doi: 10.1016/j.ifacol.2021.11.012.
91. González-Bárcena D., Boado-Cuartero B., Pérez-Muñoz Á.-G., Fernández-Soler A., Redondo J.M., et al., “HERCCULES: A university balloon-borne experiment for BEXUS 32 to characterize the thermal environment in the stratosphere using COTS,” Acta Astronautica, vol. 220, pp. 305–320, Jul. 2024, doi: 10.1016/j.actaastro.2024.04.034.
92. González-Bárcena D., Peinado-Pérez L., Fernández-Soler A., Pérez-Muñoz Á.G., Álvarez-Romero J.M., et al., “TASEC-Lab: A COTS-based CubeSat-like university experiment for characterizing the convective heat transfer in stratospheric balloon missions,” Acta Astronautica, vol. 196, pp. 244–258, Jul. 2022, doi: 10.1016/j.actaastro.2022.04.028.
93. Gonzalez-Llorente J., Lidtke A.A., Hatanaka K., Limam L., Fajardo I., Okuyama K.-I. “In-orbit feasibility demonstration of supercapacitors for space applications,” Acta Astronautica, vol. 174, pp. 294–305, Sep. 2020, doi: 10.1016/j.actaastro.2020.05.007.
94. Goyal T., Aggarwal K. “Simulator for Functional Verification and Validation of a Nanosatellite,” in 2019 IEEE Aerospace Conference, Mar. 2019, pp. 1–8. doi: 10.1109/AERO.2019.8741886.
95. Gula A., Arnold D., Barney J., Boyd K., Caffrey M., et al. “Development of the Energetic Charged Particle Instrument for the ESRA CubeSat Mission,” in 2023 IEEE Aerospace Conference, Mar. 2023, pp. 1–9. doi: 10.1109/AERO55745.2023.10116011.
96. Gula A., Barney J., Boyd K., Caffrey M., Kroupa M., et al., “Prototype Testing of Energetic Charged Particle (ECP) Detector for the ESRA CubeSat Mission to GTO,” in 2024 IEEE Aerospace Conference, Mar. 2024, pp. 1–9. doi: 10.1109/AERO58975.2024.10521296.
97. Gupta N., Garg U., Agarwal S., Vyas M. “Onboard and Ground Station Telemetry Architecture Design for a LEO Nanosatellite,” in 2020 IEEE Aerospace Conference, Mar. 2020, pp. 1–18. doi: 10.1109/AERO47225.2020.9172474.
98. Gupta N., Shahi B. “Memory architecture design for nano satellites,” in 2016 IEEE Aerospace Conference, Mar. 2016, pp. 1–7. doi: 10.1109/AERO.2016.7500695.
99. Gutierrez T., Bergel A., Gonzalez C. E., Rojas C. J., Diaz M. A. “Systematic Fuzz Testing Techniques on a Nanosatellite Flight Software for Agile Mission Development,” IEEE Access, vol. 9, pp. 114008–114021, 2021, doi: 10.1109/ACCESS.2021.3104283.
100. Hanafi M., Karim M., Latachi I., Rachidi T., Dahbi S., Zouggar S. “FPGA-based secondary on-board computer system for low-earth-orbit nano-satellite,” in 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), May 2017, pp. 1–6. doi: 10.1109/ATSIP.2017.8075514.
101. Hanlon E. A. S., Lange M. E., Keegan B. P., Culton E. A., Corbett M. J., et al. “AMODS: Autonomous mobile on-orbit diagnostic system,” in 2016 IEEE Aerospace Conference, Mar. 2016, pp. 1–10. doi: 10.1109/AERO.2016.7500512.
102. Hernández-Cabronero M., Evans D., Bartrina-Rapesta J., Aulí-Llinàs F., Blanes I., Serra-Sagristà J. “Resiliency and Efficiency of the CCSDS 124.0-B-1 Telemetry Compression Standard,” IEEE Access, vol. 12, pp. 36702–36711, 2024, doi: 10.1109/ACCESS.2024.3374227.
103. Holtstiege J., Bridges C.P. “Lean satellite design for amateur communications payload in the ESA ESEO mission,” in 2018 IEEE Aerospace Conference, Mar. 2018, pp. 1–8. doi: 10.1109/AERO.2018.8396692.
104. Ibrahim S.K., Ahmed A., Zeidan M.A.E., Ziedan I.E. “Machine Learning Techniques for Satellite Fault Diagnosis,” Ain Shams Engineering Journal, vol. 11, no. 1, pp. 45–56, Mar. 2020, doi: 10.1016/j.asej.2019.08.006.
105. IEEE Xplore. Accessed: Mar. 01, 2025. [Online]. Available: https://ieeexplore.ieee.org/Xplore/home.jsp
106. Imken T., Castillo-Rogez J., He Y., Baker J., Marinan A. IEEE Aerospace Conference, Mar. 2017, pp. 1–14. doi: 10.1109/AERO.2017.7943885.
107. Iturbe X., Keymeulen D., Yiu P., Berisford D., Hand K., et al.,NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Jun. 2015, pp. 1–8. doi: 10.1109/AHS.2015.7231151.
108. Jacobs M., Selva D. 2015 IEEE Aerospace Conference, Mar. 2015, pp. 1–10. doi: 10.1109/AERO.2015.7119240.
109. Jagannath A., Jagannath J., Drozd A. IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Jun. 2019, pp. 1–6. doi: 10.1109/CCAAW.2019.8904895.
110. Johari M. S., Bakar N. N., Mohamad Anuar M. N. F., Kamal M. S. Z., Azman Shah N. A., et al., “Design and Realization of a Nanosatellite for Malaysia SiswaSAT Competition 2020,” in 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC), Dec. 2020, pp. 128–133. doi: 10.1109/ICSPC50992.2020.9305775.
111. Kanavouras K., Hein A.M.  IEEE Engineering Management Review, pp. 1–17, 2024, doi: 10.1109/EMR.2024.3503545.
112. Kaslow D., Anderson L., Asundi S., Ayres B., Iwata C., et al., “Developing a CubeSat Model-Based System Engineering (MBSE) Reference Model - interim status,” in 2015 IEEE Aerospace Conference, Mar. 2015, pp. 1–16. doi: 10.1109/AERO.2015.7118965.
113. Kaslow D., Ayres B., Cahill P.T., Hart L., Yntema R. “A Model-Based Systems Engineering (MBSE) approach for defining the behaviors of CubeSats,” in 2017 IEEE Aerospace Conference, Mar. 2017, pp. 1–14. doi: 10.1109/AERO.2017.7943865.
114. Kaslow D., Ayres B., Cahill P.T., Hart L., Yntema R. IEEE Aerospace Conference, Mar. 2017, pp. 1–15. doi: 10.1109/AERO.2017.7943691.
115. Kaslow D., Cahill P.T., Ayres B. EEE Aerospace Conference, Mar. 2020, pp. 1–15. doi: 10.1109/AERO47225.2020.9172714.
116. Kaslow D., Hart L., Ayres B., Massa C., Chonoles M.J., et al.,IEEE Aerospace Conference, Mar. 2016, pp. 1–16. doi: 10.1109/AERO.2016.7500592.
117. Keremidis A., Tzelepis S., Hatzopoulos A. “The Integration and Testing Procedures for the AcubeSAT Nanosatellite’s Software,” in 2024 20th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Jul. 2024, pp. 1–4. doi: 10.1109/SMACD61181.2024.10745423.
118. Khalfallah M., Martinez A., Blade C., Ludwig T., Ghodous P. “Satellite Reference Databases scope and data organization: A literature review,” Computers in Industry, vol. 149, p. 103913, Aug. 2023, doi: 10.1016/j.compind.2023.103913.
119. Kilic C., Martinez R.B., Tatsch C.A., Beard J., Strader J., Das S. “NASA Space Robotics Challenge 2 Qualification Round: An Approach to Autonomous Lunar Rover Operations,” IEEE Aerospace and Electronic Systems Magazine, vol. 36, no. 12, pp. 24–41, Dec. 2021, doi: 10.1109/MAES.2021.3115897.
120. Kim B., Yang H. “Reliability Optimization of Real-Time Satellite Embedded System Under Temperature Variations,” IEEE Access, vol. 8, pp. 224549–224564, 2020, doi: 10.1109/ACCESS.2020.3044044.
121. Kondrateva O., Dietzel S., Lößer A., Scheuermann B. “Parameter Prioritization for Efficient Transmission of Neural Networks in Small Satellite Applications,” in 2023 21st Mediterranean Communication and Computer Networking Conference (MedComNet), Jun. 2023, pp. 39–42. doi: 10.1109/MedComNet58619.2023.10168858.
122. Kondrateva O., Dietzel S., Schambach M., Otterbach J., Scheuermann B. “Filling the Gap: Fault-Tolerant Updates of On-Satellite Neural Networks Using Vector Quantization,” in 2023 IFIP Networking Conference (IFIP Networking), Jun. 2023, pp. 1–9. doi: 10.23919/IFIPNetworking57963.2023.10186407.
123. Koriem A.S., Helmy M., Taha H., Aboelsoud A., Abdelgelil S., et al., “Function Testing Platform (SKTST) for the Educational Satellite ‘Space Keys,’” in 2023 IEEE Aerospace Conference, Mar. 2023, pp. 1–14. doi: 10.1109/AERO55745.2023.10115651.
124. Kuklewski M., Hanasz S., Kasprowicz G., Bieda M.S. “Universal COTS-Based SpaceVPX Payload Carrier for LEO Application,” in 2020 IEEE Aerospace Conference, Mar. 2020, pp. 1–7. doi: 10.1109/AERO47225.2020.9172280.
125. Kulu E. “Nanosats Database,” Nanosats Database. Accessed: Mar. 01, 2025. [Online]. Available: https://www.nanosats.eu/index.html
126. Kulu E. CubeSats & Nanosatellites - 2024 Statistics, Forecast and Reliability. 2024. doi: 10.52202/078365-0069.
127. Kuo Y.-M., García-Herrero F., Ruano O., Maestro J.A. “RISC-V Galois Field ISA Extension for Non-Binary Error-Correction Codes and Classical and Post-Quantum Cryptography,” IEEE Transactions on Computers, vol. 72, no. 3, pp. 682–692, Mar. 2023, doi: 10.1109/TC.2022.3174587.
128. Labrèche G., Evans D., Marszk D., Mladenov T., Shiradhonkar V., et al., “OPS-SAT Spacecraft Autonomy with TensorFlow Lite, Unsupervised Learning, and Online Machine Learning,” in 2022 IEEE Aerospace Conference (AERO), Mar. 2022, pp. 1–17. doi: 10.1109/AERO53065.2022.9843402.
129. Lakei O., Kang J., Maceo C., Sanders M. “Implementing Next-Level Modularity in CubeSat Missions for Promoting Space Education,” in 2024 IEEE Aerospace Conference, Mar. 2024, pp. 1–10. doi: 10.1109/AERO58975.2024.10521328.
130. Li X.-Y., Huang H.-Z., Li Y.-F., Xiong X. “A Markov regenerative process model for phased mission systems under internal degradation and external shocks,” Reliability Engineering & System Safety, vol. 215, p. 107796, Nov. 2021, doi: 10.1016/j.ress.2021.107796.
131. Li Y., Hoogeboom P., Dekker P.L., Mok S.-H., Guo J., Buck C. “CubeSat Altimeter Constellation Systems: Performance Analysis and Methodology,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–19, 2022, doi: 10.1109/TGRS.2021.3100850.
132. Lightholder J., Donitz B., Castillo-Rogez J., Sheldon D. “Benchmarking Onboard Science Data Retrieval Algorithms on the Snapdragon Platform,” in 2023 IEEE Aerospace Conference, Mar. 2023, pp. 1–10. doi: 10.1109/AERO55745.2023.10115594.
133. Lim L.S., Bui T.D.V., Lau Z., Tissera M.S.C., Soon J.J., et al., “Development and design challenges in VELOX-I nanosatellite,” in 2015 International Conference on Space Science and Communication (IconSpace), Aug. 2015, pp. 158–163. doi: 10.1109/IconSpace.2015.7283826.
134. Lima Da Silva Isovar, Sorice Genaro Andreia Fatima, Loureiro G., Mattiello-Francisco F., Robledo Asencio Jenny Carolina. “A Framework for Assessing Readiness of Satellite Assembly, Integration and Testing Organization,” IEEE Access, vol. 10, pp. 83472–83488, 2022, doi: 10.1109/ACCESS.2022.3196927.
135. Loke T., Kamdar H., Feng D., Chia A., Goh C.-H. “A framework for the casualty risk assessment and lifetime determination of small satellites,” in 2016 IEEE Region 10 Conference (TENCON), Nov. 2016, pp. 3584–3588. doi: 10.1109/TENCON.2016.7848725.
136. Luo S., Soh E.K., Loh A.P. “Supervising multidisciplinary final-year engineering students to develop CubeSats with an innovative project management method,” in 2018 IEEE Frontiers in Education Conference (FIE), Oct. 2018, pp. 1–4. doi: 10.1109/FIE.2018.8658780.
137. Marcelino G.M., de Mattos A.M.P., Barcellos J.C.E., Ribeiro B.F., Seman L.O., et al., “FloripaSat-2: An Open-Source Platform for CubeSats,” IEEE Embedded Systems Letters, vol. 16, no. 1, pp. 77–80, Mar. 2024, doi: 10.1109/LES.2023.3260066.
138. Martimort P., Domínguez B.C., Hélière A., Rosello J., Suess M., et al., “On-Going and Planned Mission Concept Studies for the Preparation of Future ESA Earth Observation Satellites,” in IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2023, pp. 4582–4585. doi: 10.1109/IGARSS52108.2023.10283393.
139. Martín-Ortega A., Portela-García M., de Mingo J.R., Rodríguez S., Rivas J., et al., “Early SEU sensitivity assessment for collaborative hardening techniques: A case study of OPTOS processing architecture,” Microelectronics Reliability, vol. 95, pp. 36–47, Apr. 2019, doi: 10.1016/j.microrel.2019.02.009.
140. Mattei A.L.P., de Cunha A.M., Dias L.A.V., Fonseca E., Saotome O., et al., “Nanosatellite Event Simulator Development Using Scrum Agile Method and Safety-Critical Application Development Environment,” in 2015 12th International Conference on Information Technology - New Generations, Apr. 2015, pp. 101–106. doi: 10.1109/ITNG.2015.22.
141. Merl R., Graham P. “A low-cost, radiation-hardened single-board computer for command and data handling,” in 2016 IEEE Aerospace Conference, Mar. 2016, pp. 1–8. doi: 10.1109/AERO.2016.7500849.
142. Miralles P., Thangavel K., Scannapieco A.F., Jagadam N., Baranwal P., et al., “A critical review on the state-of-the-art and future prospects of machine learning for Earth observation operations,” Advances in Space Research, vol. 71, no. 12, pp. 4959–4986, Jun. 2023, doi: 10.1016/j.asr.2023.02.025.
143. Moses R., Kalita H., Thangavelautham J. “Shape Morphing Microbots for Planetary Exploration,” in 2020 IEEE Aerospace Conference, Mar. 2020, pp. 1–8. doi: 10.1109/AERO47225.2020.9172340.
144. Mughal M.R., Praks J., Vainio R., Janhunen P., Envall J., et al., “Aalto-1, multi-payload CubeSat: In-orbit results and lessons learned,” Acta Astronautica, vol. 187, pp. 557–568, Oct. 2021, doi: 10.1016/j.actaastro.2020.11.044.
145. Muñoz-Bassol B., Muñoz-Bassol S., Estrella-Reyna J.A., Gutieŕrez-De la Riva A., Salinas-Miranda M.A., et al., “Design Process of the avionics subsystem of Colibrí mission: An experience report,” IFAC-PapersOnLine, vol. 54, no. 12, pp. 94–98, Jan. 2021, doi: 10.1016/j.ifacol.2021.11.015.
146. Naidoo J., Davidson I.E., Gupta G. “Forecasting of Time Series Telemetry for Satellite Operations using Deep Learning Techniques,” in 2024 32nd Southern African Universities Power Engineering Conference (SAUPEC), Jan. 2024, pp. 1–5. doi: 10.1109/SAUPEC60914.2024.10445091.
147. Nakajima S., Takisawa J., Ikari S., Tomooka M., Aoyanagi Y., et al., “Command-centric architecture (C2A): Satellite software architecture with a flexible reconfiguration capability,” Acta Astronautica, vol. 171, pp. 208–214, Jun. 2020, doi: 10.1016/j.actaastro.2020.02.034.
148. Nakasuka S. “Space Engineering Education Based on Real Satellite Projects - Importance of Experiencing Failures, Problem Solving and Iterations -,” IFAC-PapersOnLine, vol. 58, no. 16, pp. 247–251, Jan. 2024, doi: 10.1016/j.ifacol.2024.08.494.
149. Natarajan S., Broman D. “Timed C: An Extension to the C Programming Language for Real-Time Systems,” in 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Apr. 2018, pp. 227–239. doi: 10.1109/RTAS.2018.00031.
150. Ndao M.L., Baron C., Knudsen E., Joao K.  IEEE International Systems Conference (SysCon), Apr. 2024, pp. 1–8. doi: 10.1109/SysCon61195.2024.10553549.
151. Ndao M.L., Baron C., Mecheraoui A.  IEEE International Symposium on Systems Engineering (ISSE), Oct. 2024, pp. 1–5. doi: 10.1109/ISSE63315.2024.10741129.
152. Nies G., Stenger M., Krčál J., Hermanns H., Bisgaard M., et al.,  Acta Astronautica, vol. 151, pp. 726–735, Oct. 2018, doi: 10.1016/j.actaastro.2018.04.040.
153. Noeldeke C., Boettcher M., Mohr U., Gaisser S., Alvarez Rua M., et al., Space Research, vol. 67, no. 6, pp. 2000–2009, Mar. 2021, doi: 10.1016/j.asr.2020.12.032.
154. Nogd S., De Sousa K., Reitu A., Chatzistylianos A., Therkelsen M.O., et al., “Hardware and Software Design of YPSat’s On-Board Computer and Data Handling,” in 2023 European Data Handling & Data Processing Conference (EDHPC), Oct. 2023, pp. 1–11. doi: 10.23919/EDHPC59100.2023.10396209.
155. Nonay J.R., Fuchs C., Orsucci D., Schmidt C., Giggenbach D. “SelenIRIS: a Moon-Earth Optical Communication Terminal for CubeSats,” in 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Mar. 2022, pp. 186–195. doi: 10.1109/ICSOS53063.2022.9749725.
156. Norheim J., de Weck O. “Co-optimizing Spacecraft Component Selection, Design, and Operation with MINLP,” in 2021 IEEE Aerospace Conference (50100), Mar. 2021, pp. 1–10. doi: 10.1109/AERO50100.2021.9438148.
157. Ofodile I., Teras H., Slavinskis A., Anbarjafari G.  IEEE Aerospace Conference (AERO), Mar. 2022, pp. 1–11. doi: 10.1109/AERO53065.2022.9843532.
158. Olson J.P., Chandrasekar V., Biswas S.K. XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Aug. 2017, pp. 1–3. doi: 10.23919/URSIGASS.2017.8105278.
159. Pakartipangi W., Darlis D., Syihabuddin B., Wijanto H., Prasetyo A.D.  9th International Conference on Telecommunication Systems Services and Applications (TSSA), Nov. 2015, pp. 1–6. doi: 10.1109/TSSA.2015.7440442.
160. Pandey S., Pokharel S., Reza H. “Towards Cyber-Physical Requirement Engineering Elicitation Tool Support,” in 2018 World Automation Congress (WAC), Jun. 2018, pp. 1–5. doi: 10.23919/WAC.2018.8430399.
161. Pantoji G.S., Bhat M.H., Gwalani P.N., Bhulokam A.M. “Development of a Risk Management Plan for RVSAT-1, a Student-based CubeSat Program,” in 2021 IEEE Aerospace Conference (50100), Mar. 2021, pp. 1–7. doi: 10.1109/AERO50100.2021.9438156.
162. Pérez-Muñoz Á.-G., Gamazo-Real J.-C., González-Bárcena D., Zamorano J. “Design and implementation of a real-time onboard system for a stratospheric balloon mission using commercial off-the-shelf components and a model-based approach,” Computers and Electrical Engineering, vol. 111, p. 108953, Nov. 2023, doi: 10.1016/j.compeleceng.2023.108953.
163. Perryman N., Franconi N., Crum G., Wilson C., George A.D. “SpaceCube GHOST: A Resilient Processor for Low-Power, High-Reliability Space Computing,” in 2024 IEEE Aerospace Conference, Mar. 2024, pp. 1–11. doi: 10.1109/AERO58975.2024.10521244.
164. Perryman N., Wilson C., George A. “Evaluation of Xilinx Versal Architecture for Next-Gen Edge Computing in Space,” in 2023 IEEE Aerospace Conference, Mar. 2023, pp. 1–11. doi: 10.1109/AERO55745.2023.10115906.
165. Petit D., Georges J.-P., Divoux T., Regnier B., Miramont P. “A demonstrator of an Ethernet based embedded network in space launchers,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 16021–16026, Jul. 2017, doi: 10.1016/j.ifacol.2017.08.1914.
166. PRISMA 2020 statement, PRISMA statement. Accessed: Mar. 01, 2025. [Online]. Available: https://www.prisma-statement.org/prisma-2020
167. Puente A., Alonso A., Garrido J., Zamorano J. “An Embedded Systems Laboratory for Aerospace Students,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 17338–17343, Jan. 2020, doi: 10.1016/j.ifacol.2020.12.1822.
168. Reza H., Korvald C., Straub J., Hubber J., Alexander N., Chawla A. “Toward requirements engineering of cyber-physical systems: Modeling CubeSat,” in 2016 IEEE Aerospace Conference, Mar. 2016, pp. 1–13. doi: 10.1109/AERO.2016.7500897.
169. Reza H., Sehgal R., Straub J., Alexander N. “Toward model-based requirement engineering tool support,” in 2017 IEEE Aerospace Conference, Mar. 2017, pp. 1–10. doi: 10.1109/AERO.2017.7943647.
170. RIS (file format), Wikipedia. Dec. 04, 2024. Accessed: Mar. 01, 2025. [Online]. Available: https://en.wikipedia.org/w/index.php?title=RIS_(file_format)&oldid=1261058405
171. Rodríguez A., Santos L., Sarmiento R., De La Torre E. “Scalable Hardware-Based On-Board Processing for Run-Time Adaptive Lossless Hyperspectral Compression,” IEEE Access, vol. 7, pp. 10644–10652, 2019, doi: 10.1109/ACCESS.2019.2892308.
172. Rogenmoser M., Benini L. “Trikarenos: A Fault-Tolerant RISC-V-based Microcontroller for CubeSats in 28nm,” in 2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Dec. 2023, pp. 1–4. doi: 10.1109/ICECS58634.2023.10382727.
173. Roibás-Millán E., Sorribes-Palmer F., Chimeno-Manguán M. “The MEOW lunar project for education and science based on concurrent engineering approach,” Acta Astronautica, vol. 148, pp. 111–120, Jul. 2018, doi: 10.1016/j.actaastro.2018.04.047.
174. Rouquette N., Incer I., Pinto A. “Early Design Exploration of Space System Scenarios Using Assume-Guarantee Contracts,” in 2023 IEEE 9th International Conference on Space Mission Challenges for Information Technology (SMC-IT), Jul. 2023, pp. 15–24. doi: 10.1109/SMC-IT56444.2023.00011.
175. Růžička V., Mateo-García G., Bridges C., Brunskill C., Purcell C., et al., “Fast Model Inference and Training On-Board of Satellites,” in IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2023, pp. 2002–2005. doi: 10.1109/IGARSS52108.2023.10282715.
176. Sajjad W., Shafique A., Mahmood R. “Designing of Reliable, Low-Power, and Performance-Efficient Onboard Computer Architecture for CubeSats,” IEEE Journal on Miniaturization for Air and Space Systems, vol. 5, no. 2, pp. 59–72, Jun. 2024, doi: 10.1109/JMASS.2023.3342208.
177. Sakib S., Faizullin D., Koga Y., Uetsuhara M., Onishi S. “In-Orbit FPGA reprogramming device for small satellites,” Advances in Space Research, vol. 71, no. 11, pp. 4549–4556, Jun. 2023, doi: 10.1016/j.asr.2023.01.026.
178. Saleem A., Chandran A., Srivastava S., Varghese J.J., Chang J.S. “nanoSMAD – A First Order System Configuration Design Tool for Nano and Micro Satellites,” Advances in Space Research, Oct. 2023, doi: 10.1016/j.asr.2023.09.065.
179. Salehi A., Fakoor M., Kosari A., Ghoreishi S.M.N.lines,  CMES - Computer Modeling in Engineering and Sciences, vol. 131, no. 2, pp. 599–618, Mar. 2022, doi: 10.32604/cmes.2022.018840.
180.Scholz A., Hsiao T.-H., Juang J.-N., Cherciu C.  Advances in Space Research, vol. 62, no. 12, pp. 3438–3448, Dec. 2018, doi: 10.1016/j.asr.2017.10.015.
181.  ScienceDirect.com | Science, health and medical journals, full text articles and books. Accessed: Mar. 01, 2025. [Online]. Available: https://www.sciencedirect.com/
182.  Selva D., Dingwall B., Altunc S.  IEEE Aerospace Conference, Mar. 2016, pp. 1–17. doi: 10.1109/AERO.2016.7500564.
183.  Sholder R., Whitley S.  IEEE Aerospace Conference, Mar. 2023, pp. 1–13. doi: 10.1109/AERO55745.2023.10115565.
184. Siewert S., Rocha K., Butcher T., Pederson T.  IEEE Aerospace Conference (50100), Mar. 2021, pp. 1–17. doi: 10.1109/AERO50100.2021.9438438.
185.  Silva C., Borges R.A., Battistini S., Cappelletti C. Acta Astronautica, vol. 187, pp. 537–545, Oct. 2021, doi: 10.1016/j.actaastro.2021.05.037.
186.  Sridharan S., Qedar R. European Data Handling & Data Processing Conference (EDHPC), Oct. 2023, pp. 1–9. doi: 10.23919/EDHPC59100.2023.10396629.
187.   Succa M., Boscolo I., Drocco A., Malucchi G., Dussy S. “IXV avionics architecture: Design, qualification and mission results,” Acta Astronautica, vol. 124, pp. 67–78, Jul. 2016, doi: 10.1016/j.actaastro.2016.01.006.
188. Suresh S.V.S., Green Rosh K.S., Gopa Kumar K.C. International Conference on Space Science and Communication (IconSpace), Aug. 2015, pp. 187–192. doi: 10.1109/IconSpace.2015.7283822.
189. Suryadevara J., Tiwari S.  25th Asia-Pacific Software Engineering Conference (APSEC), Dec. 2018, pp. 512–521. doi: 10.1109/APSEC.2018.00066.
190. Thangavel K., Sabatini R., Gardi A., et al. Progress in Aerospace Sciences, vol. 144, p. 100960, Jan. 2024, doi: 10.1016/j.paerosci.2023.100960.
191.  Tipaldi M., Legendre C., Koopmann O., et al. Acta Astronautica, vol. 145, pp. 482–491, Apr. 2018, doi: 10.1016/j.actaastro.2018.02.020.
192.  ipaldi M., Silvestrini S., Pesce V., Colagrossi A.  Modern Spacecraft Guidance, Navigation, and Control, V. Pesce, A. Colagrossi, and S. Silvestrini, Eds., Elsevier, 2023, pp. 631–646. doi: 10.1016/B978-0-323-90916-7.00011-1.
193.  Tomioka T., Okumura Y., Masui H., Takamiya K., Cho M. Acta Astronautica, vol. 126, pp. 334–341, Sep. 2016, doi: 10.1016/j.actaastro.2016.05.004.
194. Tonasso R., Tataru D., Rauch H., Pozsgay V., Pfeiffer T., et al. Acta Astronautica, vol. 218, pp. 1–17, May 2024, doi: 10.1016/j.actaastro.2024.02.006.
195.  Treberspurg W., Rezaei A., Kralofsky R., Sinn A., Stren A., Scharlemann C. Advances in Space Research, vol. 74, no. 3, pp. 1253–1260, Aug. 2024, doi: 10.1016/j.asr.2024.05.035.
196.   Tumenjargal T., Kim S., Masui H., Cho M.Acta Astronautica, vol. 160, pp. 331–342, Jul. 2019, doi: 10.1016/j.actaastro.2019.04.047.
197.  Varadharajan V., Suri N. Space Policy, vol. 67, p. 101600, Feb. 2024, doi: 10.1016/j.spacepol.2023.101600.
198.  Viel F., Gouveia K.R., Costa E., Oliveira M., Boing M., et al. IEEE Embedded Systems Letters, vol. 15, no. 2, pp. 93–96, Jun. 2023, doi: 10.1109/LES.2022.3191638.
199.  Von Maurich O., Golkar A. Acta Astronautica, vol. 149, pp. 61–76, Aug. 2018, doi: 10.1016/j.actaastro.2018.05.003.
200.  VOSviewer - Visualizing scientific landscapes, VOSviewer. Accessed: Mar. 01, 2025. [Online]. Available: https://www.vosviewer.com/
201.  Wang H., Wang H., Jin Z. Chinese Journal of Aeronautics, vol. 28, no. 3, pp. 883–893, Jun. 2015, doi: 10.1016/j.cja.2015.04.010.
202.   Wang Y., Zhao K., Zhang X., Xu Chen. IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), May 2024, pp. 1–6. doi: 10.1109/INFOCOMWKSHPS61880.2024.10620909.
203.   Waseem M., Sadiq M.U.  IEEE Aerospace and Electronic Systems Magazine, vol. 33, no. 4, pp. 24–34, Apr. 2018, doi: 10.1109/MAES.2017.180230.
204.   Willis J., Walton P., Wilde D., Long D.  IEEE Journal on Miniaturization for Air and Space Systems, vol. 1, no. 1, pp. 3–9, Jun. 2020, doi: 10.1109/TGRS.2019.2954807.
205.   Worrakul N., Laohalidanond K., Saisutjarit P., Kuntanapreeda S., Inamori . Third Asian Conference on Defence Technology (ACDT), Jan. 2017, pp. 36–41. doi: 10.1109/ACDT.2017.7886153.
206.   Wuerl A., Wuerl M.  IEEE Aerospace Conference, Mar. 2015, pp. 1–12. doi: 10.1109/AERO.2015.7119213.
207.  Würl S., Faehling M., Werner H.V., Langer M.  IEEE Aerospace Conference, Mar. 2023, pp. 1–8. doi: 10.1109/AERO55745.2023.10115576.
208.  Yang J.-M., Lee D.-E., Kwak S.W. Journal of the Franklin Institute, vol. 358, no. 2, pp. 1273–1290, Jan. 2021, doi: 10.1016/j.jfranklin.2020.11.024.
209.  Yuhaniz S.S., Hamzah N. International Conference on Space Science and Communication (IconSpace), Aug. 2015, pp. 33–37. doi: 10.1109/IconSpace.2015.7283819.
210.   Zhang K., Gasiewski A.J.IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul. 2016, pp. 5569–5572. doi: 10.1109/IGARSS.2016.7730454.
211.  Zhao D., Pous M. International Symposium on Electromagnetic Compatibility – EMC Europe, Sep. 2023, pp. 1–6. doi: 10.1109/EMCEurope57790.2023.10274171.
212.   Zheng Z., Guo J., Gill E. Acta Astronautica, vol. 145, pp. 28–43, Apr. 2018, doi: 10.1016/j.actaastro.2018.01.017.
213.   Zusack S., Murphy J., Miller R., Chodas M.  IEEE Aerospace Conference, Mar. 2023, pp. 1–10. doi: 10.1109/AERO55745.2023.10115881.