Propagation directions of acoustic gravity waves above the polar caps of the Earth
Heading:
1Fedorenko, AK 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2011, 17 ;(3):34-44 |
https://doi.org/10.15407/knit2011.03.034 |
Publication Language: Russian |
Abstract: Propagation directions of middle-scale acoustic gravity waves (AGW) in the polar regions are investigated using the Dynamics Explorer 2 satellite data. It is found that the AGW above the polar caps are systematically propagated opposite to wind at altitudes of 250 to 350 km. The tendency for anti-clockwise rotations of AGW propagation directions is noticeable above the north polar cap and the tendency for clockwise rotations is observed above the south polar cap. The polar waves are gathered in the next main directions: 1) to the magnetic noon that is towards the wind of disturbed polar circulation; 2) to 15-16 hours of magnetic local time that is towards the global ther-mospheric wind blowing from low latitude regions. Under the polar day and polar night conditions the directions of AGW propagations are changed in the both hemisphere according to seasonal reconstruction of polar wind dynamics.
|
Keywords: acoustic gravity waves, magnetic noon, ther-mospheric wind |
References:
1. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 527 p. (Nauka, Moscow, 1988) [in Russian].
2. Fedorenko A. K. Determination Characteristics of Atmospheric Gravity Waves in the Polar Regions Using Mass-Spectrometer Satellite Measurements. Radio Physics and Radio Astronomy, 14 (3), 254—265 (2009) [in Russian].
3. Fedorenko A. K. Energy balance of acoustic gravity waves above the polar caps according to the data of satellite measurements. Geomagn. Aehron., 50 (1), 111—122 (2010) [in Russian].
https://doi.org/10.1134/S0016793210010123
https://doi.org/10.1134/S0016793210010123
4. Fedorenko A. K., Kryuchkov E. I. Distribution of medium-scale acoustic gravity waves in polar regions according to satellite measurement data. Geomagn. Aehron., 51 (4), 527—539 (2011) [in Russian].
https://doi.org/10.1134/S0016793211040128
https://doi.org/10.1134/S0016793211040128
5. Carignan G. R., Block B. P., Maurer J. C., et al. The neutral mass Spectrometer on Dynamics Explorer. Space Sci. Instrum., 5, 429—441 (1981).
6. Cowling D.H., Webb H.D., Yeh K.C. Group rays of internal gravity waves in a wind-stratified atmosphere. J. Geophys. Res., 76, 213—220 (1971).
https://doi.org/10.1029/JA076i001p00213
https://doi.org/10.1029/JA076i001p00213
7. Crowley G., Jones T. B., Dudeney J. R. Comparison of short period TID morphologies in Antarctica during geomagnetically quiet and active intervals. J. Atmos. Terr. Phys., 49, 1155—1162 (1987).
https://doi.org/10.1016/0021-9169(87)90098-5
https://doi.org/10.1016/0021-9169(87)90098-5
8. Ding F., Wan W., Yuan H. The influence of background winds and attenuation on the propagation of atmospheric gravity waves. J. Atmos. Terr. Phys., 65, 857—869 (2003).
https://doi.org/10.1016/S1364-6826(03)00090-7
https://doi.org/10.1016/S1364-6826(03)00090-7
9. Hays P. B., Killeen T. L., Kennedy B. C. The Fabry-Perot interferometer on Dynamics Explorer. Space Sci. Instrum., 5, 395—416 (1981).
10. Hines C. O. Internal gravity waves at ionospheric heights. Can. J. Phys., 38, 1441—1481 (1960).
https://doi.org/10.1139/p60-150
https://doi.org/10.1139/p60-150
11. Johnson F. S., Hanson W. B., Hodges R. R., et al. Gravity waves near 300 km over the polar caps. J. Geophys. Res., 100, 23993—24002 (1995).
https://doi.org/10.1029/95JA02858
https://doi.org/10.1029/95JA02858
12. Killeen T. L., Won Y. I., Nicieyewski R. J., Burns A. G. Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic fields dependencies. J. Geophys. Res., 100, 21327—21342 (1995).
https://doi.org/10.1029/95JA01208
https://doi.org/10.1029/95JA01208
13. Lühr H., Rentz S., Ritter P., et al. Average thermospheric wind pattern over the polar regions, as observed by CHAMP. Ann. Geophys., 25, 1093— 1101 (2007). Available: www.ann-geophys.net/25/1093/2007
https://doi.org/10.5194/angeo-25-1093-2007
https://doi.org/10.5194/angeo-25-1093-2007
14. Rees D., Fuller-Rowell T. J., Gordon R., et al. A comparison of wind observations of the upper thermosphere from the Dynamics Explorer satellite with the predictions of a global time-dependent model. Planet. Space Sci., 31 (11), 1299—1314 (1983).
https://doi.org/10.1016/0032-0633(83)90067-3
https://doi.org/10.1016/0032-0633(83)90067-3
15. Spencer, N. W., Wharton L. E., Niemann H. B., et al. The Dynamics Explorer wind and temperature spectrometer. Space Sci. Instrum., 5, 417—428 (1981).
16. Sun L., Wan W., Ding F., Mao T. Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model. Ann. Geophys., 25, 1979—1986 (2007).
Available: www.ann-geophys.net/25/1979/2007
Available: www.ann-geophys.net/25/1979/2007
17. Waldock J. A., Jones T. B. HF Doppler observations of medium-scale traveling ionospheric disturbances observed at mid latitudes. J. Atmos. Terr. Phys., 48, 245—260 (1986).
https://doi.org/10.1016/0021-9169(86)90099-1