Photosystem II of kalanhoe daigremontiana sheltered by bacterial consortium under Mars-like conditions
Heading:
1Burlak, OP, 2Mikheev, OM, 3Zaets, IYe., 4de Vera, J-PP, 5Lorek, A, 6Koncz, A, 7Foing, BH, 3Kozyrovska, NA 1Institute of Molecular Biology & Genetics of NASU, Kyiv, Ukraine 2Institute of Cell Biology & Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 3Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 4German Aerospace Center (DLR), Berlin, Germany 5German Aerospace Center (DLR) Berlin, Institute of Planetary Research, FRG 6German Aerospace Center (DLR) Berlin, Institute of Planetary Research,Berlin, FRG 7ESA/ESTEC/SRE-S, postbus 299 NL-2200 AG, Noordwijk, The Netherlands |
Kosm. nauka tehnol. 2011, 17 ;(3):45-53 |
https://doi.org/10.15407/knit2011.03.045 |
Publication Language: English |
Abstract: The maximum quantum yield of the photosystem II (Fv /Fm ) and other parameters were measured in situ fluorometrically in Kalanhoe daigremontiana under simulated martian-like conditions (low atmospheric pressure, high CO2 concentration, and UV irradiation of near-martian surface spectrum) in a Mars simulation chamber. We found no differences in Fv /Fm at hypobaria (10 mbar) and ambient pressure, as well as between treated with bacteria and control plants. However, a difference was seen between variants of kalanchoe exposed to CO2 of a high concentration (95 %). The maximum quantum yield was higher in presence of bacteria, although Fv /Fm decreased in both variants (inoculated and noninoculated) under a high CO2 concentration in the atmosphere, in contrast to low-pressure conditions. The Fv /Fm values for kalanchoe plants grown in martian regolith simulant or in earth soil under simulated martian conditions were lower than in the case of normal earth conditions.
The positive effect of bacterial inoculation on plant accommodation to adverse simulated martian conditions was more pronounced for the kalanchoe plants grown in martian regolith simulant and depended on bacterial species, especially, under rigorous conditions of the joint action of low pressure, high content of CO2, and UV irradiation. For K. daigremontiana plants treated with Klebsiella oxytoca, Methylobacterium sp., the photochemical quenching coefficient qP and Stern-Volmer non-photochemical quenching coefficient NPQ were lower during diurnal and nocturnal periods as compared to the nontreated plants. This revealed some protection for PSII. The majority of bacterial strains and their consortium demonstrated protective effect in K. daigremontiana under abiotic stressors and after the impact of stressors, as distinct from arbus-cular mycorrhiza fungi.
|
Keywords: bacteria, kalanhoe, Mars simulation chamber |
References:
1. Ardanov P., Ovcharenko L., Zaets I., et al. Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biocontrol, 56 (1), 43—49 (2011).
2. Burlak O. P., Lar O. V., Rogutskyy I. S., et al. A bacterial consortium attenuates the low-dose gamma-irradiation effect in Kalanchoe plantlets. Kosm. Nauka Tehnol. [Space Sci. Technol.], 16 (2), 75—80 (2010).
3. Cao J., Govindjee R. Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes. Biochem. Biophys. acta, 1015 (2), 180—188 (1990).
https://doi.org/10.1016/0005-2728(90)90018-Y
https://doi.org/10.1016/0005-2728(90)90018-Y
4. Chaerle L., Hagenbeek D., De Bruyne E., et al. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant and Cell Physiol., 45 (7), 887—896 (2004).
https://doi.org/10.1093/pcp/pch097
https://doi.org/10.1093/pcp/pch097
5. Chaerle L., Valcke R., Van Der Straeten D. Imaging techniques in plant physiology: from simple to multispectral approaches. In: Advances in Plant Physiology, Ed. by A. Hemantaranjan, 135—155 (Sci. Publs, Jodhpur, 2002).
6. Corey K. A., Barta D. J., Wheeler R. M. Toward Martian agriculture: responses of plants to hypobaria. Life Support Biosph. Sci., 8 (2), 103—114 (2002).
7. de Vera J-P., Möhlmann D., Butina F., et al. Survival potential and photosynthetic activity of lichens under Marslike conditions: a laboratory study. Astrobiology, 10 (2), 215—227 (2010).
https://doi.org/10.1089/ast.2009.0362
https://doi.org/10.1089/ast.2009.0362
8. de Vera J.-P., Tilmes F., Heydenreich T., et al. Potential of prokariotic and eukariotic organism in a Mars like environment and as reference system for the search of life on other planets. Proceeding of DGLR Int. Symp. To the Moon and beyond (14—16 March, Bremen), available as CD (Bremen, 2007).
9. Drennan P. M., Nobel P. S. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant, Cell and Environment, 23 (8), 767—781 (2000).
https://doi.org/10.1046/j.1365-3040.2000.00588.x
https://doi.org/10.1046/j.1365-3040.2000.00588.x
10. Guralnick L. J., Heath R. L., Goldstein G. Fluorescence quenching in the varied photosynthetic modes of Portu-lacaria afra (L.) Jacq. Plant Physiol., 99 (4), 1309—1313 (1992).
https://doi.org/10.1104/pp.99.4.1309
https://doi.org/10.1104/pp.99.4.1309
11. Herzog B., Grams T. E., Haag-Kerwer A., et al. Expression of modes of photosynthesis (C3, CAM) in Clusia criuva Camb. in a Cerradol gallery forest transect. Plant Biol., 1 (3), 357—364 (1999).
https://doi.org/10.1111/j.1438-8677.1999.tb00264.x
https://doi.org/10.1111/j.1438-8677.1999.tb00264.x
12. King E. O., Ward M. K., Raney D. E. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. and Clin. Med., 44 (2), 301—307 (1954).
13. Kozyrovska N. O., Korniichuk O. S., Voznyuk T. M., et al. Microbial community in a precursory scenario of growing Tagetes patula L. in a lunar greenhouse. Kosm. Nauka Tehnol. [Space Sci. Technol.], 10 (5-6), 221—225 (2004).
14. Kozyrovska N. O., Korniichuk O. S., Voznyuk T. M., et al. Growing pioneer plants for a lunar base // Adv. Space Res. — 2006. — 37. — P. 93—99.
15. Kozyrovska N., Negrutska V., Kovalchuk M. Paenibacillus sp., a promising candidate for development of a novel technology of plant inoculant production. Biopolym. Cell., 21 (4), 312—319 (2005).
https://doi.org/10.7124/bc.0006F7
https://doi.org/10.7124/bc.0006F7
16. Krause G. H., Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol., 42, 313—349 (1991).
https://doi.org/10.1146/annurev.pp.42.060191.001525
https://doi.org/10.1146/annurev.pp.42.060191.001525
17. Lichtenthaler H. K., Rinderle U. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in analytic Chemistry, 19, 29—85 (1988).
https://doi.org/10.1080/15476510.1988.10401466
https://doi.org/10.1080/15476510.1988.10401466
18. Liu J.-Y., Qiu B.-S. , Liu Z.-L., Yang W-N. Diurnal photosynthesis and photoinhibition of rice leaves with chlorophyll fluorescence. Acta Bot. Sinica, 46 (5), 552—559 (2004).
19. Lytvynenko T., Zaetz I., Voznyuk T. M., et al. A rationally assembled microbial community for growing Tagetes pat-ula L. in a lunar greenhouse. Res. Microbiol., 157, 87—92 (2006).
https://doi.org/10.1016/j.resmic.2005.07.009
https://doi.org/10.1016/j.resmic.2005.07.009
20. Maneval W. E. Lacto-phenol preparations. Stain Technology, 11 (1), 9—11 (1936).
https://doi.org/10.3109/10520293609111316
https://doi.org/10.3109/10520293609111316
21. Miller J. H. Experiments in Molecular Genetics, 432 p. (Cold Spring Harbor Laboratory Press, New York, 1972).
22. Paul A.-L., Schuerger A. C., Popp M. P., et al. Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure. Plant Physiol., 134 (1), 215— 223 (2004).
https://doi.org/10.1104/pp.103.032607
https://doi.org/10.1104/pp.103.032607
23. Rintamaki E., Salo R., Lehtonen E., Aro E.-M. Regulation of D1-protein degradation during photoinhibition of photosystem II in vivo: phosphorilation of the D1-protein in various plant groups. Planta, 195 (3), 379—386 (1995).
https://doi.org/10.1007/BF00202595
https://doi.org/10.1007/BF00202595
24. Shi Y., Li C. Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynth. Res., 105 (1), 5—13 (2010).
https://doi.org/10.1007/s11120-010-9547-7
https://doi.org/10.1007/s11120-010-9547-7
25. Tang Y., Guo S., Dong W., et al. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce. Adv. Space Res., 46 (6), 751—760 (2010).
https://doi.org/10.1016/j.asr.2010.04.032
https://doi.org/10.1016/j.asr.2010.04.032
26. Ting I. P. Crassulacean acid metabolism. Annu. Rev. Plant Physiol., 36, 595—622 (1985).
https://doi.org/10.1146/annurev.pp.36.060185.003115
https://doi.org/10.1146/annurev.pp.36.060185.003115
27. Winter K., Demmig B. Reduction state of Q and non-radiative energy dissipation during photosynthesis in leaves of a crassulacean acid metabolism plant, Kalanchoe daigre-montiana Hamet et Perr. Plant Physiol., 85 (4), 1000—1007 (1987).
https://doi.org/10.1104/pp.85.4.1000
https://doi.org/10.1104/pp.85.4.1000
28. Zaets I., Burlak O., Rogutskyy I., et al. Bioaugmentation in growing plants for lunar bases. Adv. Space Res., 47 (6), 1071—1078 (2011).
https://doi.org/10.1016/j.asr.2010.11.014
https://doi.org/10.1016/j.asr.2010.11.014
29. Zhang H., Xie X., Kim M.-S., et al. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J., 56 (2), 264—273 (2008).
https://doi.org/10.1111/j.1365-313X.2008.03593.x