Fast-electron charge transfer at downwind surfaces of spacecrafts in the Earth's polar ionosphere

1Shuvalov, VA, 2Kochubey, GS, 2Bandel, KA, 2Priymak, AI
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(6):005-017
https://doi.org/10.15407/knit2007.06.005
Publication Language: Russian
Abstract: 
We developed the procedure for physical modelling of the processes of high-voltage charging downwind surfaces of spacecraft structural elements using fast electrons in polar ionosphere in the Earth's shadow. The dependences of equilibrium potentials of downwind surfaces on a relation of concentration of fast electrons and positive ions in the near wake and in the undisturbed plasma are determined from the results of set and numerical tests the, satellite measurements.
Keywords: equilibrium potentials, fast electrons, positive ions
References: 
1. Antonov V. M., Ponomarenko A. G. Laboratory Studies of Effects of Spacecraft Electrification, 115 p. (Nauka, Novosibirsk, 1992) [in Russian].
2. Bronstein I. M., Fraiman B. S. Secondary Electron Emission, 408 p. (Nauka, Moscow, 1969) [in Russian].
3. Venikov V. A. Similarity theory and modeling, 480 p. (Vyssh. shk., Moscow, 1976) [in Russian].
4. Gurevich A. V., Dimant Ya. S. Flow of a rarefied plasma around a disk. Geomagnetizm i Aeronomiia, 15 (2), 221—230 (1975) [in Russian].
5. Gurevich A. V., Pitaevskii L. P., Smirnova V. V. Ionospheric aerodynamics. Uspehi fiz. nauk, 99 (1), 3—49 (1969) [in Russian].
6. Gurevich A. V., Smirnova V. V. Flow over a plane body by a supersonic rarefied plasma flow. Geomagnetizm i Aeronomiia, 10 (3), 402—407 (1970) [in Russian].
7. Gurevich A. V., Shvartsburg A. B. Nonlinear theory of propagation of radio waves in the ionosphere, 272 p. (Nauka, Moscow, 1973) [in Russian].
8. Landau L. D., Lifshits E. M. Electrodynamics of Continuous Media, 523 p. (Fizmatgiz, Moscow, 1959) [in Russian].
9. McDaniel E. W. Collision Phenomena in Ionized Gases, 832 p. (Mir, Moscow, 1967) [in Russian].
10. Nosachev L. V., Skvortsov V. V. A Study of Ion Current Distribution in a Wake Produced by Cylindrical and Spherical Bodies in a Stream of Argon and Nitrogen Plasma. Uchenye Zapiski TsAGI, 1 (5), 39—43 (1970) [in Russian].
11. Nosachev L. V., Skvortsov V. V. Perturbations caused by an object in the flow of a low-density magnetized plasma. Zhurnal Tekhn. Fiziki, 48 (6), 1178—1185 (1978) [in Russian].
12. Skvortsov V. V., Nosachev L. V. The Structure of the Trail behind a Spherical Model in a Stream of Rarefied Plasma. Kosmicheskie Issledovaniia, 6 (2), 208— 233 (1968) [in Russian].
13. Hill J. R., Whipple E. C. Charging of large structures in space with application to the solar sail spacecraft. Ajerokosmicheskaja tehnika, No. 3, 122—131 (1986) [in Russian].
14. Shuvalov V. A., Zeldina E. A. Structure of the electrostatic field in the wake of a sphere in the flow of a low-density equilibrium plasma. Geomagnetizm i Aeronomiia, 16 (4), 603—607 (1976) [in Russian].
15. Shuvalov V. A., Pismenny N. I., Priimak A. I., Kochubei G. S. Probe diagnostics of rarefied flows partially dissociated plasma. Pribory i tehnika jeksperimenta, No. 3, 92—100 (2007) [in Russian].
16. Shuvalov V. A., Priimak A. I., Gubin V. V. Radiative Electrification of Spacecraft Construction Elements: Physical Modeling of Charge Accumulation and Neutralization. Kosmicheskie Issledovaniia, 39 (1), 18—26 (2001) [in Russian].
17. Shuvalov V. A., Priymak A. I., Reznychenko N. P., et al. Contact diagnostics of the ionosphere and laboratory plasma. Kosm. nauka tehnol., 10 (2-3), 3—15 (2004) [in Russian].
18. Shuvalov V. A., Tihiy V. G., Priymak A. I.,  et al. Degradation of polymeric materials for covering spacecraft solar arrays under exposure to atomic oxygen flows. Kosm. nauka tehnol., 11 (5-6), 78—86 (2005) [in Russian].
19. Anderson P. C., Koons H. C. Spacecraft charging anomaly a low-altitude satellite in a Aurora. J. Spacecraft and Rockets, 33 (5), 734—738 (1996).
https://doi.org/10.2514/3.26828
20. Davies R., Dennison J. Evolution of secondary electron emission characteristics of spacecraft surface. J. Spacecraft and Rockets, 34 (4), 571—574 (1998).
https://doi.org/10.2514/2.3252
21. Davis V. A., Mandell M. J., Cooke D. L., Enloe C. L. High-voltage interactions in plasma wakes: simulation and flight measurement from the charge hazards and studies (CHAWS) experiment. J. Geophys. Res., 104 (A6), 12455—12459 (1999).
https://doi.org/10.1029/1998JA900071
22. Fournier G., Pigache D. Wakes in collisionless plasma. Phys. Fluids, 18 (11), 1443—1453 (1975).
https://doi.org/10.1063/1.861043
23. Gussenhoven M. A., Hardy D. A., Rich F., et al. High-level spacecraft charging in the low-altitude polar and auroral environment. J. Geophys. Res., 90 (A11), 11009—11023 (1985).
https://doi.org/10.1029/JA090iA11p11009
24. Kozima H., Yamada K., Nakasima K. The self-similarity and the non-neutrality of near-wakes in two-dimensional geometry. Phys. Fluids B, 1 (4), 719— 724 (1989).
https://doi.org/10.1063/1.859136
25. Laframbiose J. Theory of spherical and cylindrical Langmure probe in a collisionless plasma at rest. Rarefied and Dynamics, 2, 22—44 (1966).
26. Laframbiose J., Luo J. High-voltage polar orbit and beam-induced charging of a dielectric spacecraft: a wake-induced barrier effect mechanism. J. Geophys. Res., 94 (A7), 1615—1629 (1989).
https://doi.org/10.1029/JA094iA07p09033
27. Liu V. C. Ionospheric gas dynamics of satellite and diagnosic probe. Space Sci. Rev., 9, 423— 490 (1969).
https://doi.org/10.1007/BF00212707
28. Liu V. C., Yew H. Near wake of the rarefied plasma flows at mesothermal speed. AJAA Paper, N 68/69, 8 p. (1968).
29. Murphy G. B., Reasoner D. L., Tribble A., et al. The plasma wake of the Shuttle orbiter. J. Geophys. Res., 94 (A6), 6866—6872 (1989).
https://doi.org/10.1029/JA094iA06p06866
30. Samir U., Gordon R., Brace L., Theis R. The near-wake structure of the Atmosphere Explorer C (AE-C) satellite. A parameter investigation. J. Geophys. Res., 84 (2A), 513—525 (1979).
https://doi.org/10.1029/JA084iA02p00513
31. Samir U., Kaufman Y., Brace L., Brinton H. The dependence of ion density in the wake of the AE-C satellite on the ratio body size to debye lengths in on [O ]-dominated plasma. J. Geophys. Res., 85 (A4), 1769—1772 (1980).
https://doi.org/10.1029/JA085iA04p01769
32. Samir U., Stone N. A., Wright K. H. On plasma disturbances caused by the motion of the Space Shuttle and the small satellite: a comparison of the situ observation. J. Geophys. Res., 91 (Al), 277—285 (1986).
33. Samir U., Weldman P., Rich F., et al. About the parametric interplay between ionic Mach number, body-size and satel­lite potential in determining the ion depletion in the wake of the S3-2 satellite. J. Geophys. Res., 86 (A13), 11161 — 11166 (1981).
https://doi.org/10.1029/JA086iA13p11161
34. Stenglass E. J. Backscattering of kilovolt electron from solid. Phys. Rev., 54 (2), 345—358 (1954).
https://doi.org/10.1103/PhysRev.95.345
35. Wang J., Hasting S. D. Ionospheric plasma flow over large high-voltage space platforms. II. The formation and structure of plasma wake. Phys. Fluids B, 4 (6), 1615—1629 (1992).
https://doi.org/10.1063/1.860070

36. Wang J., Lenng P., Garrett A., Murphy G. Multibody-plas-ma interactions: charging in the wake. J. Spacecraft and Rockets, 31 (5), 889—894 (1994).
https://doi.org/10.2514/3.26528