Physical effects of the Romanian meteoroid. 1
Heading:
1Chernogor, LF 1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine |
Space Sci.&Technol. 2018, 24 ;(1):49-70 |
https://doi.org/10.15407/knit2018.01.049 |
Publication Language: Russian |
Abstract: We present a comprehensive modeling study of the processes induced in all geospheres by the passage and explosion of a representative meteoroid. As an example, we analyze the event that occurred over Romania on January 7, 2015. The modeling allows estimating of mechanical, optical, gas-dynamical, and thermal effects associated with the passage of the Romanian meteoroid. The major release of energy (1012 J) is shown to occur at approximately 44 km altitude where the rate of mass loss and the optical radiation power have reached approximately 14.5 t/s and 1 TW respectively. The pressure at the shock at the epicenter of the meteoroid explosion was equal to several dozen pascals. The passage of the cosmic body led to the formation of a gas-dust plume. The hot trace from the meteoroid was cooling down for a few seconds.
|
Keywords: gas-dust plume, gas-dynamic and thermal effects, interaction with atmosphere, mechanical, meteoroid, optical |
References:
1. Alpatov V. V., Burov V. N., Vagin J. P., Galkin K. A., Givishvili G. V., Gluhov J. V., Davidenko D. V., Zubachev D. S., Ivanov V. N., Karhov A. N., Kolomin M. V., Korshunov V. A., Lapshin V. B., Leshenko L. N., Lysenko D. A., Minligareev V. T., Morozova M. A., Perminova E. S., Portnyagin, J. I., Rusakov J. S., Stal N. L., Syroeshkin A. V., Tertyshnikov A. V., Tulinov G. F., Chichaeva M. A., Chudnovsky V. S., Shtyrkov A. Y. Geophysical conditions at the explosion of the Chelyabinsk (Chebarkulsky) meteoroid in February 15, 2013. (FGBU “IPG” Publ., Moscow, Russia, 2013) [in Russian].
2. Artem’jeva N. A., Shuvalov V. V. The Chelyabinsk meteoroid atmospheric plume. Dinamicheskije processy v geospherah. Vypusk 5. Geophysicheskije effekty padenija Chelyabinskogo meteoroida: sbornik nauchnyh trudov IDG RAN. Special’nyj vypusk, 134—146. (GEOS, Moskva, 2014) [in Russian].
3. Shustov B. M., Ryhlova L. V. (eds.). Asteroid-Comet Hazards: Yesterday, Today, and Tomorrow. Moscow, Russia: Fizmatlit Publ., 384 p. (2010) [in Russian].
4. Solar System Research. 47 (4). (Thematical issue) (2013) [in Russian].
5. Bronshten V. A. Physics of Meteor Phenomena, 416 p. (Springer Netherlands, 1983).
https://doi.org/10.1007/978-94-009-7222-3
https://doi.org/10.1007/978-94-009-7222-3
6. Bronsten V. A. The entry of the large meteoroids into the atmosphere. Astronomicheskij vestnik, 27 (1), 102—121 (1993) [in Russian].
7. Bronsten V. A. About physical mechanism of the large meteor bodies quasicontinuous fragmentation. Astronomicheskij vestnik. 27 (3), 65—74 (1993) [in Russian].
8. Bronsten V. A. The theory Grigoryan using to the case of the giant meteoroids fragmentation. Astronomicheskij vestnik. 28 (2), 118 —124 (1994) [in Russian].
9. Bronsten V. A. Large meteor bodies fragmentation and destruction into the atmosphere. Astronomicheskij vestnik. 29 (5), 450—459 (1995) [in Russian].
10. Gor’kavyj N. N., Liharyov D. S., Minnibayev D. N. The aerosol trace colour variations of the Chelyabinsk meteoroid. The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. N. A. Antipin (ed.), 118—123 (Chelyabinsk, 2014) [in Russian].
11. Gor’kavyj N. N., Tajdakova T. A. The interaction of the Chelyabinsk meteoroid with atmosphere. The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. N. A. Antipin (ed.), 124—129 (Chelyabinsk, 2014) [in Russian].
12. Gor'kavyj N. N., Tajdakova T. A., Provornikova E. A, Gor'kavyj I. N., Ahmetvaleev M. M. The aerosol plume of the Chelyabinsk meteoroid. The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. N. A. Antipin (ed.), 130—135 (Chelyabinsk, 2014) [in Russian].
13. Gossard E. E., Hooke Y. X., Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Developments in Atmospheric Science). Elsevier Scientific Pub. Co., 472 p. (1975)
14. Grigoryan S. S. Motion and Destruction of Meteorites in Planetary Atmospheres. Cosmic Research, 17 (6), 724—740 (1980).
15. Gritsevich M. I., Stulov V. P., Turchak L. I. Classification of the Consequences for Collisions of Cosmic Bodies with the Earth. Doklady Physics, 54 (11), 499 — 503 (2009).
https://doi.org/10.1134/S1028335809110068
https://doi.org/10.1134/S1028335809110068
16. Dinamicheskije processy v geospherah. Vypusk 5. Geophysical effects of the Chelyabinsk meteoroid fall: Proceedings IDG RAN. Thematical issue, 160 p. (GEOS, Moskva, 2014) [in Russian].
17. Emelyanenko V. V., Popova O. P., Chugaj N. N., Sheljakov M. A., Pahomov Ju. V., Shustov B. M., Shuvalov V. V., Birjukov E. E., Rybnov Ju. S., Marov M. Ja., Ryhlova L. V., Naroenkov S. A., Kartashova A. P., Harlamov V. A., Trubeckaja I. A. Astronomical and physical aspects of the Chelyabinsk event. (February 15, 2013). Solar System Research, 47 (4), 240 — 254 (2013).
18. Adushkin V. V., Nemchinov, I. V. (eds). Catastrophic Impacts of Cosmic Bodies. 310 p. (Moscow, Russia: ECC Akademkniga Publ., 2005) [in Russian].
19. Kruchinenko V. G. Mathematical and physical analysis of the meteor phenomenon, 294 p. (Kyiv, 2012) [in Ukrainian]
20. Antipin N. A. (ed.) The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ., 694 p. (Chelyabinsk, 2014) (in Russian).
21. Stulov V. P., Mirskii V. N., Vislyi A. I. Aerodynamics of Bolides, 240 p. (Moscow, Russia: Nauka Publ., 1995) (in Russian).
22. Chernogor L. F. Physics and Ecology of Disasters. 556 p. (V. N. Karazin Kharkiv National University Publ., Kharkiv, 2012) [in Russian].
23. Chernogor L. F. Physical effects of the Chelyabinsk meteorite passage. Dopov. Nac. akad. nauk Ukr.. N 10, 97 — 104 (2013) [in Russian].
24. Chernogor L. F. Plasma, electromagnetic and acoustic effects of meteorite «Chelyabinsk». Engineering Physics. 8, 23 — 40 (2013) [in Russian].
25. Chernogor L. F. Main effects of Chelyabinsk meteorite falling: physics and mathematics calculation results. Meteorit Cheljabinsk — god na Zemle : materialy Vserossijskoj nauchnoj konferencii. Eds N. A. Antipin, 229 — 264. (Chelyabinsk, 2014) [in Russian].
26. Chernogor L. F., Liashchuk O. I. Infrasound observations of the bolide explosion over Romania on January 7, 2015. Kinematics and Physics of Celestial Bodies, 33 (6), 276 — 290 (2017).
https://doi.org/10.3103/S0884591317060022
https://doi.org/10.3103/S0884591317060022
27. Shuvalov V. V., Artem’jeva N. A., Popova A. P. The shock wave parameters estimation caused the Chelyabinsk meteoroid fall. Dinamicheskije processy v geospherah. Vypusk 5. Geophysicheskije effekty padenija Chelyabinskogo meteoroida: sbornik nauchnyh trudov IDG RAN. Special’nyj vypusk, 48 — 59 (GEOS, Moskva, 2014) [in Russian].
28. Borovička J., Spurný P., Grigore V. I., Svoreň J. The January 7, 2015, superbolide over Romania and structural diversity of meter-sized asteroids. Planetary and Space Science. 143, 147 — 158 (2017).
https://doi.org/10.1016/j.pss.2017.02.006
https://doi.org/10.1016/j.pss.2017.02.006
29. Chernogor L. F., Rozumenko V. T. The physical effects associated with Chelyabinsk meteorite's passage. Problems of Atomic Science and Technology. 86 (4), 136 — 139 (2013).
30. Gehrels T. (Ed.). Hazards Due to Comets and Asteroids, 1300 p. (Univ. Arizona Press, Tucson; London, 1994).
31. Gorkavyi N. N., Taidakova T. A., Provornikova E. A. Aerosol plume after the Chelyabinsk bolide. Solar system research. 47 (4), 275—279 (2013).
https://doi.org/10.1134/S003809461304014X
https://doi.org/10.1134/S003809461304014X
32. Grigoryan S. S. Physical mechanism of Chelyabinsk superbolide explosion. Solar System Research. 47 (4), 268 — 274 (2013).
https://doi.org/10.1134/S0038094613040151
https://doi.org/10.1134/S0038094613040151
33. Hills J.G., Goda M.P. The fragmentation of small asteroids in the atmosphere. Astron. J. 105 (3), 1114 — 1144 (1993).
https://doi.org/10.1086/116499
https://doi.org/10.1086/116499
34. Hunten D. M., Turco R. P., Toon O. B., et al. Smoke and dust particles of meteoric origin in the mesosphere and stratosphere. J. Atmos. Sci. 37, 1342–1357 (1980).
https://doi.org/10.1175/1520-0469(1980)037<1342:SADPOM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1980)037<1342:SADPOM>2.0.CO;2
35. Le Pichon A., Blanc E., Hauchecorne A. Infrasound monitoring for atmospheric studies. — Dordrecht, Heidelberg , London, New York, Springer, 734 p. (2010)
36. Popova O. P., Jenniskens P., Emelyanenko V., et al. Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 342, 1069–1073 (2013).
https://doi.org/10.1126/science.1242642
https://doi.org/10.1126/science.1242642
37. Popova O. P., Jenniskens P., Emelyanenko V., et al. Supplementary material for Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science, 145 p. (2013)
38. Pricopi D., Dascalu M., Badescu O., et al. Orbit reconstruction for the meteoroid of the meteorite-producting fireball that exploded over Romania on January 7, 2015. Proc. Romanian Academy, Series A, 17 (2), 133 — 136 (2016).