Power consumption of major factors of heat absorption in aerodynamic heating of heat-protective coatings of objects of space-rocket engineering І. Limiting power consumption of internal processes of heat absorption in thermal destruction of a material

1Frolov, GA
1I.N. Frantsevich Institute for Material Science Problems, NAS of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2003, 9 ;(2-3):058-067
https://doi.org/10.15407/knit2003.02.058
Publication Language: Russian
Abstract: 
Results of the investigation of HPC of various types are generalized. We established a law of the automodelling warm-up mode in the ablation from a surface of HPC, a value of the constant of thermal destruction of materials, and the parameter of the non-stationary ablation which allows a calculation of the non-stationary ablation without determination of heat conduction of a material at high temperatures. Calculated and experimental investigations proved that limiting power consumption of internal processes of heat absorption is reached when the thicknesses of warmed and carried away layers of a material become equal.
Keywords: heat-protective coatings, space-rocket engineering, thermal destruction
References: 
1. Andrianova V. G., Goryachkovskii Yu. G., Petrov V. A., et al. Investigation of the spectral emittance of boron-silicate coatings on high-temperature heat-insulation materials. Teplophys. Vysok. Temp., 20 (5), 992—995 (1982) [in Russian].
2. Lykov A. B. Theory of Thermal Conductivity, 599 p. (Vysshaya shkola, Moscow, 1967) [in Russian].
3. Pasichny V. V., Berezhetskaya V. Ya., Frolov G. A., et al. Investigation of the Serviceability of the Heat Shield of the Orbital Aircraft "Buran" under the Conditions of Radiant Heating on Solar Plants. Inzhenerno-Fizicheskii Zhurnal, 74 (6), 32—33 (2001) [in Russian].
4. Polezhaev Yu. V. Methods and Means of Gasdynamic Aircraft Testing: Textbook,  90 p. (MAI, Moscow, 1983) [in Russian].
5. Polezhaev Yu. V., Panchenko V. I. Fundamental relations of erosion kinetics. Inzhenerno-Fizicheskii Zhurnal, 52 (5), 709—716 (1987) [in Russian].
https://doi.org/10.1007/BF00873301
6. Polezhaev Yu. V., Frolov G. A. Self-similar heating regime upon destruction of the surface of materials. Inzhenerno-Fizicheskii Zhurnal, 50 (2), 236—240 (1986) [in Russian].
https://doi.org/10.1007/BF00870082
7. Polezhaev Yu. V., Frolov G. A. Transient regime in the thermal and erosional destruction of materials. Inzhenerno-Fizicheskii Zhurnal, 52 (3), 357—362 (1987) [in Russian].
https://doi.org/10.1007/BF00872500
8. Polezhaev Yu. V., Frolov G. A. Quantitative relationships governing the establishment of a quasisteady destruction regime on unilaterial material heating. Inzhenerno-Fizicheskii Zhurnal, 56 (4), 533—539 (1989) [in Russian].
https://doi.org/10.1007/BF00870585
9. Polezhaev Yu. V., Frolov G. A. Influence of thermal conductivity of a material on an unsteady heat removal parameter. Inzhenerno-Fizicheskii Zhurnal, 62 (4), 546—551 (1992) [in Russian].
https://doi.org/10.1007/BF00854951
10. Polezhaev Yu. V., Yurevich F. B. Thermal protection, 392 p. (Energia, Moscow, 1976) [in Russian].
11. Sergeev V. L. Non-Stationary Heat and Mass Transfer in the Region of the Stagnation Point, 160 p. (Nauka i Tekhnika, Minsk, 1988) [in Russian].
12. Frolov G. A. Effect of the type of heating on the rate of destruction of materials. Inzhenerno-Fizicheskii Zhurnal, 50 (4), 629—635 (1986) [in Russian].
https://doi.org/10.1007/BF00871072
13. Frolov G. A. Temperature of the surface of a body undergoing destruction by a constant thermal load. Inzhenerno-Fizicheskii Zhurnal, 53 (3), 420—426 (1987) [in Russian].
https://doi.org/10.1007/BF00873825
14. Frolov G. A., Dvernyakov V. S., Pasichnyi V. V. Some results of an experimental study of heat transfer on a surface under the combined action of radiant and convective heat sources. Teplophys. Vysok. Temp., 15 (1), 221 (Rukopis' dep. v VINITI 14.11.77, No. 4217-77 Dep) (1978) [in Russian].
15. Frolov G. A., Dvernyakov V. S., Pasichnyi V. V., and Zakharov F. I. Experimental study of heat transfer of a subsonic and supersonic plasma jet with a hot surface. Inzhenerno-Fizicheskii Zhurnal, 40 (6), 965—969 (1981) [in Russian].
16. Frolov G. A., Korol' A. A., Pasichnyi V. V., et al. Characteristic state-transformation temperatures of a quartz glass-ceramic with unidirectional heating. Inzhenerno-Fizicheskii Zhurnal, 51 (6), 932—940 (1986) [in Russian].
https://doi.org/10.1007/BF00870351
17. Frolov G. A., Pasichnyi V. V., Polezhaev Yu. V., Choba A. V. Model of thermal destruction of material subjected to one-sided heating. Inzhenerno-Fizicheskii Zhurnal, 52 (1), 33—37 (1987) [in Russian].
https://doi.org/10.1007/BF00870196
18. Frolov G. A., Pasichnyi V. V., Suzdal'tsev E. I., Tsyganenko V. S. Measurement of temperature fields in specimens of quartz ceramic during surface ablation. Inzhenerno-Fizicheskii Zhurnal, 57 (2), 313—317 (1989) [in Russian].
19. Frolov G. A., Polezhaev Iu. V., Pasichnyi V. V., Zakharov F. I. Investigation of the ablation parameters of thermal protection materials in an unsteady heating regime. Inzhenerno-Fizicheskii Zhurnal, 40 (4), 608—614 (1981) [in Russian].
20. Adams M. C., Powers W. E., Georgiev S. J. An experimental and Theoretical Study of Quarts Ablation at the Stagnation Point. J. Aero/Space Sci., 27 (7), 535—547 (1960).
21. Brewer W. D., Kassel P. C. Flash X-ray technique for investigation ablative material response to simulated reentry environments. Int. J. Nondestruct. Test., 3 (4), 375—390 (1972).
22. Harrach R. I. Estimates on the ignition of high explosiwes laser pulses. J. Appl. Phys., 47 (6), 2473—2482 (1976).
https://doi.org/10.1063/1.322961
23. Frolov G. Application of the high temperature heating installation for gradient material obtaining. FGM News, No. 28, 16—20 (1995).

24. Zakharov F. I., Frolov G. A. High temperature investigation of composite gradient materials in non-equilibrium air plasma. In: Proc. 3-rd Inter. Symp. on FGM, 413— 418, CH-1015 (Presses polytechniques et universitate romandes, Lausanne, 1995).