The effects of neutron irradiation on the rate of gaseous exchange and activity of the key antioxidant enzymes in the liver of mice
Heading:
1Muradian, Kh.K, 1Utko, NA, 1Badova, TA, 1Bezrukov, VV, 1Butenko, GM, 1Pishel, IN, 1Rodnichenko, AE, 1Sytnik, LN, 1Ustimenko, AN, 2Zheltonozhskii, VA, 2Sadovnikov, LV, 3Tarasov, GG 1State Institution "D.F.Chebotarov Institute of Gerontology of the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine 2Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 3V.Ye. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2003, 9 ;(2-3):090-098 |
https://doi.org/10.15407/knit2003.02.090 |
Publication Language: Russian |
Abstract: An attempt is made to develop a ground-based model of the irradiation by so-called intermediate neutrons which is specific to the secondary radiation in spacecrafts. For this purpose we used a 252Cf98-containing source for which the neutron spectrum formed by hydrogen-containing materials has the mode in the range from 1 to 5 MeV. A dose-dependent increase of the oxygen consumption (Vo2, r = 0.48, P< 0.001)) and of carbon dioxide exhalation (Vco2 г = 0.59, P< 0.001) rates was found within 22–24 hours after irradiation of mice by doses of 2 Gy, 4 Gy, and 6 Gy. Positive correlations of the liver catalase activity with Vo2 (r = 0.66, P < 0.001) and Vco2 (r = 0.63, P < 0.001) for the group of intact mice are absent for the group of animals irradiated by a dose of 2 Gy. Our analysis with the use of three-dimensional non-linear plotting is indicative of quantitative and qualitative differences of interrelations between the pro- and antioxidant variables under discussion.
|
Keywords: antioxidant, liver of mice, neutron irradiation |
References:
1. Muradian Kh. K. The Space Radiation: Nature, Biological Effects and Shielding. Kosm. nauka tehnol., 8 (1), 107—113 (2002) [in Russian].
https://doi.org/10.15407/knit2002.01.107
https://doi.org/10.15407/knit2002.01.107
2. Timchenko A. N., Mozzhukhina T. G., and Muradian Kh. K. Effect of the Hypergravitational Stress on the Survival, Gas Exchange, Termoregulation, and Synthesis of RNA and Protein in Mice of Different Age, Probl. Staren. Dolgolet., 6, 145—150 (1996) [in Russian].
3. Aebi H. Catalase in vitro. Meth. Enzymol., 105, 121 — 126 (1984).
https://doi.org/10.1016/S0076-6879(84)05016-3
https://doi.org/10.1016/S0076-6879(84)05016-3
4. Allen R. G., Tresini M. Oxidative stress and gene regulation. Free Radic. Biol. Med., 28, 463—499 (2000).
https://doi.org/10.1016/S0891-5849(99)00242-7
https://doi.org/10.1016/S0891-5849(99)00242-7
5. Badhwar G. D., Keith J. E., Cleghorn T. F. Neutron measurements onboard the space shuttle. Radiat. Meas., 33, 235—241 (2001).
https://doi.org/10.1016/S1350-4487(00)00159-1
https://doi.org/10.1016/S1350-4487(00)00159-1
6. Benton E. R., Benton E. V. Space radiation dosimetry in low-Earth orbit and beyond. Nucl. Instrum. and Meth. Phys. Res. B, 184, 255—294 (2001).
https://doi.org/10.1016/S0168-583X(01)00748-0
https://doi.org/10.1016/S0168-583X(01)00748-0
7. Cadenas E., Davies K. J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med., 29, 222—230 (2000).
https://doi.org/10.1016/S0891-5849(00)00317-8
https://doi.org/10.1016/S0891-5849(00)00317-8
8. Clowdsley M. S., Wilson J. W., Kim M. H., et al. Neutron environments on the Martian surface. Phys. Med., 17, Suppl. 1, 94—96 (2001).
9. Droge W. Free radicals in the physiological control of cell function. Physiol. Revs., 82, 47—95 (2002).
https://doi.org/10.1152/physrev.00018.2001
https://doi.org/10.1152/physrev.00018.2001
10. Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239—247 (2000).
https://doi.org/10.1038/35041687
https://doi.org/10.1038/35041687
11. Hollander J., Gore M., Fiebig R., et al. Spaceflight downregu-lates antioxidant defense systems in rat liver. Free Radic. Biol. Med., 246, 385—390 (1998).
https://doi.org/10.1016/S0891-5849(97)00278-5
https://doi.org/10.1016/S0891-5849(97)00278-5
12. Lowry O. H., Rosenbrough N. H., Farr A. L., Randall J. R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265—75 (1951).
13. McCord J. M., Fridovich I. Superoxide dismutase. J. Biol. Chem., 244, 6049—6055 (1969).
14. Reitz G. Neutron dosimetric measurements in shuttle and MIR. Radiat. Meas., 33, 341—346 (2001).
https://doi.org/10.1016/S1350-4487(00)00153-0
https://doi.org/10.1016/S1350-4487(00)00153-0
15. Shackelford R. E., Kaufmann W. K., Paule R. S. Oxidative stress and cell cycle checkpoint function. Free Radic. Biol. Med., 28, 1387—1404 (2000).
https://doi.org/10.1016/S0891-5849(00)00224-0
https://doi.org/10.1016/S0891-5849(00)00224-0
16. Singleterry R. C., Badavi F. F., Shinn J. L., et al. Estimation of neutron and other radiation exposure components in low earth orbit. Radiat. Meas., 33, 355—360 (2001).
https://doi.org/10.1016/S1350-4487(01)00049-X
https://doi.org/10.1016/S1350-4487(01)00049-X
17. Spillantini P., Taccetti F., Papini P., Rossi L. Radiation shielding of spacecraft in manned interplanetary flights. Nucl. Instrum. and Meth. Phys. Res. A, 443, 254— 263 (2000).
https://doi.org/10.1016/S0168-9002(99)01091-8
https://doi.org/10.1016/S0168-9002(99)01091-8
18. Spillantini P., Taccetti F., Papini P., et al. Radiation shielding of astronauts in interplanetary flights: the CREAM surveyor to Mars and the magnetic lens system for a spaceship. Phys. Med., 17, Suppl. 1, 249—254 (2001).
19. Trakhtenberg I. M., Korolenko T. K., Utko N. A., Muradian K. K. The effect of chronic lead exposure on the body gaseous exchange and activities of superoxidedismutase and catalase in the liver of rats. In: 7th Reg. Meeting of the Central and Eastern European Section, Oct. 14—16, 2002, Brno. Trends and Advances in Env. Chem. and Ecotoxicol., 222—225 (2002).
20. Wilson J. W., Shinn J. L., Tripathi R. K., et al. Issues in deep space radiation protection. Acta Astronaut., 49, 289—312 (2001).
https://doi.org/10.1016/S0094-5765(01)00107-2