Methods of essential variables determination for the Earth’s surface state assessing

1Yailymov, BYa., 2Lavreniuk, MS, 3Shelestov, AYu., 4Kolotii, AV, 3Yailymova, HO, 1Fedorov, OP
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Space Research Institute of the National Academy of Sciences of Ukraine and the National Space Agency of Ukraine, Kyiv, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
3National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
4Space Research Institute of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Kyiv; National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine
Space Sci.&Technol. 2018, 24 ;(4):24-37
https://doi.org/10.15407/knit2018.04.026
Publication Language: Ukrainian
Abstract: 
In this paper, we describe the results and the methodology for a definition of land degradation indicators. The conducted work allowed us to specify the methods for obtaining quantitative estimates of land use as well as to estimate the land cover change for the territory of Ukraine over the period of time.  An analysis of existing datasets for the territory of Ukraine was carried out to estimate the changes of the land cover.
         The sets of data over the territory of Ukraine were investigated for the creation of land cover maps as well as for methods of vegetation state assessment, in particular, for assessing land degradation and LDN (Land Degradation Neutrality) supported with the UN Convention to the Combat Desertification. As the national datasets for assessment of land cover changes dynamics, the land cover maps at the territory of Ukraine for 2000, 2010 and 2016 are considered. As the data sources, the maps developed at the Space Research Institute of Ukraine are used. These maps were created using the neural network classification of the time series of satellite data. For 2000 and 2010, the land cover maps have a spatial resolution of 30 m for the entire territory of Ukraine. They were created on the basis of the Landsat-4/5/7 satellite imagery within the framework of the SIGMA FP-7 project. The performed analysis showed that the overall accuracy of global land cover maps is lower as compare with the regional land cover maps by 10% for 2000 and by 12% for 2010. For 2016, the land cover map was created with the use of satellite data from the Sentinel constellation with a spatial resolution of 10 m. An analysis of land cover changes for 2000-2010 and 2000-2016 shows the following signs of land degradation (negative trends) at the territory of Ukraine: transitions of forest to the uncultivated land (non-cropland), transitions of forest to the cultivated land (cropland), transitions of forest to the bare land. The main problems of land degradation in Ukraine were identified, namely the places where significant land cover changes took place.  The analysis of land cover change areas over the specified period of time was performed for each type of transition. We present also the results of a cross-comparison of forest areas obtained from the national land cover maps with statistics for three years (2000, 2010 and 2016).
Keywords: essential variables, land cover map, land degradation, satellite data
References: 
1. Heoportal ESA CCI Land Cover products: a new generation of satellite-derived global land cover products [Elektronnyj resurs] / Rezhym dostupu : http://maps.elie.ucl. ac.be/CCI/viewer/index.php.
2. United States Geological Survey. [Elektronnyj resurs] / Rezhym dostupu : http://earthexplorer.usgs.gov.
3. Derzhavne ahentstvo lisovykh resursiv Ukrainy [Elektronnyj resurs] / Rezhym dostupu : http://dklg.kmu.gov. ua/forest/control/uk/publish/article;jsessionid=CDD57 B4213360D89C901AC1D51FA9E94?art_id=101934& cat_id=32876.
4. Shelestov A., Yailymov B. Stan monitorynhu faktychnoho vykorystannia sil’s’kohospodars’kykh zemel’ v providnykh krainakh na osnovi suputnykovykh danykh. Ukrains’kyj zhurnal dystantsijnoho zonduvannia Zemli, 2017, N 12, P. 59—66. [in Ukrainian]
5. Atzberger C., Formaggio A., Shimabukuro Y., Udelhoven T., Mattiuzzi M., Sanchez G., Arai E. Obtaining crop-specific time profiles of NDVI: the use of unmixing approaches for serving the continuity between SPOT-VGT and PROBA-V time series. International Journal of Remote Sensing, 2014, Vol. 35, No. 7, P. 2615—2638.
https://doi.org/10.1080/01431161.2014.883106
6. Bontemps S., Defourny P., Van E. Bogaert GLOBCOVER 2009-Products description and validation report. ESA, 2010, P. 1—30.
7. Chen J., Liao A., Cao X., et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogrammetry and Remote Sens, 2015, Vol. 103, P. 7—27.
8. CORINE Land Cover [Elektronnyj resurs] / Rezhym dostupu : http://www.eea.europa.eu/publications/COR0- landcover.
9. Gallego F. J., Delincé J., Rueda C. Crop area estimates through remote sensing: stability of the regression correction. International Journal of Remote Sensing, 1993, Vol. 14, No.18, P. 3433—3445.
https://doi.org/10.1080/01431169308904456
10. Giria C., Pengrab B., Longc J., Lovelanda T. Next generation of global land cover characterization, mapping, and monitoring, Int. J. Appl. Earth Observation and Geoinform, 2013, Vol. 25, P. 30—37.
https://doi.org/10.1016/j.jag.2013.03.005
11. Jia K., et al. Land cover classification using Landsat 8 operational land imager data in Beijing, China. Geocarto International, 2014, Vol. 29, No 8, P. 941—951.
https://doi.org/10.1080/10106049.2014.894586
12. Kogan F., Kussul N., Adamenko T., Skakun S., Kravchenko O., Kryvobok O., Shelestov A., Kolotii A., Kussul O., Lavrenyuk A. Winter wheat yield forecasting: A comparative analysis of results of regression and biophysical models. Journal of Automation and Information Sciences, 2013, Vol. 45, No. 6, P. 68-81.
https://doi.org/10.1615/JAutomatInfScien.v45.i6.70
13. Kolotii A., Kussul N., Shelestov A., Skakun S., Yailymov B., Basarab R., Lavreniuk M., Oliinyk T., Ostapenko V. Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2015, P. 39–44.
https://doi.org/10.5194/isprsarchives-XL-7-W3-39-2015
14. Kravchenko A., Kussul N., Lupian E., Savorsky V., Hluchy L., Shelestov A. Water resource quality monitoring using heterogeneous data and high-performance computations. Cybernetics and Systems Analysis, 2008, Vol. 44, No. 4, P. 616—624.
15. Kussul N., Lavreniuk M., Skakun S., Shelestov A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 2017, Vol. 12. No. 5, P. 778— 782.
16. Kussul N., Lavreniuk N., Shelestov A., Yailymov B., Butko I. Land Cover Changes Analysis Based on Deep Machine Learning Technique, Journal of Automation and Information Sciences. 2016, Vol. 48, No. 5, P. 42—54.
17. Kussul N., Lemoine G., Gallego J., Skakun S., Lavreniuk M, and Shelestov A. Parcel-based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, No 6, P. 2500 — 2508.
18. Kussul N., Lemoine G., Gallego J., Skakun S., Lavreniuk M. Parcel based classification for agricultural mapping and monitoring using multi-temporal satellite image sequences. The International Geoscience and Remote Sensing Symposium (IGARSS ), 2015 IEEE International, 2015, P. 165—168.
19. Kussul N., Shelestov A., Basarab R., Skakun S., Kussul O., Lavreniuk M. Geospatial intelligence and data fusion techniques for sustainable development problems. 11th International Conference on ICT in Education, Research and Industrial Applications: Integration, Harmonization and Knowledge Transfer, ICTERI 2015 (14—16 May 2015, Lviv, Ukraine), 2015, Vol.1356, P. 196—203.
20. Kussul N., Shelestov A., Basarab R., Yailymov B., Lavreniuk M., Kolotii A. High resolution land cover for Ukraine. Space research in Ukraine, January 2016, P. 44—47.
21. Kussul N., Shelestov A., Lavreniuk M., Skakun S. Deep Learning Approach For Large Scale Land Cover Mapping Based On Remote Sensing Data Fusion. Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, 2016, P. 198—201. DOI: 10.1109/ IGARSS.2016.7729043.
22. Kussul N., Shelestov A., Skakun S. Grid technologies for satellite data processing and management within international disaster monitoring projects. Grid and Cloud Database Management, 2011, P. 279–305.
https://doi.org/10.1007/978-3-642-20045-8_14
23. Kussul N., Shelestov A., Skakun S., Kravchenko O. Highperformance intelligent computations for environmental and disaster monitoring. Int. J. Information Technologies & Knowledge, 2009, Vol. 3, P. 135–156.
24. Kussul N., Skakun S., Shelestov A., Kussul O. The use of satellite SAR imagery to crop classification in Ukraine within JECAM project, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2014, P. 1497–1500.
https://doi.org/10.1109/IGARSS.2014.6946721
25. Kussul N., Skakun S., Shelestov A., Lavreniuk M., Yailymov B., Kussul O. Regional scale crop mapping using multi-temporal satellite imagery, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2015, P. 45–52.
https://doi.org/10.5194/isprsarchives-XL-7-W3-45-2015
26. Land Degradation Neutrality. [Elektronnyj resurs] / Rezhym dostupu : http://www2.unccd.int/issues/land-sdgs/ land-degradation-neutrality.
27. Lavreniuk M., Kussul N., Skakun S., Shelestov A., Yailymov B. Regional Retrospective High Resolution Land Cover For Ukraine: Methodology And Results. International Geoscience and Remote Sensing Symposium 2015 (IGARSS 2015), № 15599383, P. 3965—3968.
28. Lavreniuk M., Skakun S., Shelestov A., Yailymov B., Yanchevskii S., Yaschuk D., Kosteckiy A. Large-Scale Classification of Land Cover Using Retrospective Satellite Data. Cybernetics and Systems Analysis, 2016, Vol 52, No 1, P. 127—138.
29. Malenovský Z., Rott H., Cihlar J., Schaepman M., GarcíaSantos G., Fernandes R., Berger M. Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 2012, Vol. 120, P. 91—101.
https://doi.org/10.1016/j.rse.2011.09.026
30. Roy D., Wulder M., Loveland T., et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 2014, Vol. 145, P. 154–172.
https://doi.org/10.1016/j.rse.2014.02.001
31. Shelestov A., Kolotii A., Camacho F., Skakun S., Kussul O., Lavreniuk M., Kostetsky O. Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, P. 1733—1736.
https://doi.org/10.1109/IGARSS.2015.7326123
32. Skakun S., Kussul N., Shelestov A., Lavreniuk M., Kussul O. Efficiency Assessment of Multitemporal C-Band Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery for Crop Classification in Ukraine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015.
33. UNCCD. 2015. Report of the Conference of the Parties on its twelfth session, held in Ankara from 12 to 23 October 2015. Part two: Actions. ICCD/COP(12)/20/Add.1. United Nations Convention to Combat Desertification (UNCCD), Bonn. See Decision3/COP.12, page 8. Available at: http://www.unccd.int/Lists/OfficialDocuments/ cop12/20add1eng.pdf
34. Waldner F., Kussul N., Guerric le Maire, Dupuy S. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. International Journal of Remote Sensing, July 2016, Vol. 3714, No 14, P. 3196—3231.
35. Zhong L., Gong P., Biging G. Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using landsat imagery. Remote Sensing Environ, 2014, Vol. 140, P. 1–13. 
https://doi.org/10.1016/j.rse.2013.08.023