Acceleration of resource tests of spacecraft polymers for resistance to long-term influence of atomic oxygen in the Earth ionosphere

1Shuvalov, VA, 1Kulagin, SN, 2Lazuchenkov, DN
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Space Sci. & Technol. 2021, 27 ;(4):54-64
https://doi.org/10.15407/knit2021.04.054
Publication Language: Ukrainian
Abstract: 
The procedure of accelerated resource tests of spacecraft polymers for their resistance to the long-term influence of atomic oxygen (AO) in the Earth's ionosphere at altitudes from 200 to 700 km has been developed. The procedure involves irradiation of polymers with high-energy ions of atomic oxygen and the use of a kapton-H polyimide as reference material. The condition of equivalence of the " atomic oxygen - polymer" interaction in the ionosphere and on the laboratory set is the equality of tested material mass loss. The basis for substantiating the procedure of accelerated tests is the result: when irradiating the kapton-H polymer with high-energy atomic oxygen ions in the energy range from 30 to 80 eV, the degradation of polyimide is determined by the process of chemical etching of the material.
       To substantiate the procedure of accelerating resource tests of polymeric structural materials of spacecraft for resistance to long-term action of atomic oxygen flows, the dependences of mass loss and volumetric mass loss factor (reactivity) of kapton-H polyimide and Teflon FEP-100A on fluence and energy of the atomic oxygen ions have been obtained. It is shown that when irradiating kapton-H polyimide with atomic oxygen ions with the energy of 30 to 80 eV, the material mass loss due to chemical etching is about an order of magnitude greater than the mass loss due to kinetic sputtering. When the kapton-H polymer is irradiated with high-energy atomic oxygen ions, the coefficient of acceleration of the resource tests and the fluence of atomic oxygen are about two orders of magnitude greater than the coefficient of acceleration obtained using atomic oxygen ions with an energy of 5 eV.
Keywords: accelerated test, atomic oxygen flow, ionospheric plasma, polymeric structural materials, spacecraft
References: 
1. Anan’eva O. A., Milinchuk V. K., Zagorskii D. L. (2007). Study of one-side aluminized polyimide films exposed on the Mir  orbital space station. High Energy Chemistry, 41(6), 389—395.
2. Voitsenya V. S., Guzhova S. K., Titov V. I. (1991). Influence of low-temperature plasma and electromagnetic radiation on materials. Moscow: Energoatomizdat, 224 p.
3. Guzhova S. K., Novikov L. S., Chernik V. N., Skurat V. E. (2007). Model of Space: Scientific information publication. Ed. by M. I. Panasyuk, L. S. Novikov. Moscow: KDU. Vol. 2. 171 p.
4. Science-intensive technologies in technics: The impact of the space environment on the materials and equipment of spacecraft. (2000). Ed. by K. S. Kasaev. Moscow: CJSC NII ENCITEH. Vol. 17.
5. Nikiforov A. P., Ternovoy A. N., Samsonov P. V., Skurat V. E. (2002). Problems of studying the mechanism of interaction between vacuum UV radiation and hyperthermic atomic oxygen (5 eV) with spacecraft materials. Khimicheskaya fizika, 21(5), 73—82.
6. Heald M. A., Wharton C. B. (1966). Plasma diagnostics with microvawaves. N.Y., London, Sydney: John Wiley and Sons Inc., 452 p.
7. Shuvalov V. A., Gorev N. B., Tokmak N. A., Pismennyi N. I., Osinovyy G. G. (2017). Dynamic effect of a plasma beam on a space debris object. Space Science and Technology, 23(1), 36—49.
8. Shuvalov V. A., Pis’mennyi N. I., Priimak A. I., Kochubey G. S. (2007). A probe diagnostics for high-speed flows of rarefied partially dissociated plasma. Instrum. and Experimental Techniques, 50(3), 370—378.
9. Shuvalov V. A., Tokmak N. A., Reznichenko N. P. (2015). Degradation of spacecraft polymer films on long exposure to atomic oxygen flows and vacuum ultraviolet radiation. Space Science and Technology, 21(5), 56—68.
10. Allegri G., Corradi S., Marchetti M., Milinchuk V. K. (2003). On the degradation of Polymeric Thin Films in LEO. Proc. 9th ISMSE, ESA, SP-540. Netherlands. Noordwijk.
11. Banks B. A., Backus J. A., Manno M. V., Waters D. L., Cameron K. C., De Groh K. K. (2011). Prediction of atomic oxygen erosion yield for spacecraft polym. J. Spacecraft and Rockets, 48(1), 14—22.
12. Banks B. A., Waters D. L., Thorson S. F., De Groh K. K., Snyder A. Miller S. (2006). Comparison of atomic oxygen erosion yields of materials at various energies and impact angles. Proc. 10th Intern. Symp. on Materials in Environment ESA and 8th ICPMSE, SP-616.
13. Cazanbon B., Paillous A., Siffre J., Thomas R. (1998). Mass spectrometric analysis of reaction products of fast oxygen atom. J. Spacecraft and Rockets, 35(6), 797—803.
14. Chernik V. N., Novikov L. S., Akiskin A. I. (2006). About adequacy of ground-based tests of polymers at higher atomic oxygen energy (20—30 eV). Proc. 10th Intern. Symp. on Materials in Environment ESA and 8th ICPMSE, 127—131.
15. De Groh K., Smith D. C. (1997). Investigation FEP embrittlement on spacecraft in low orbit. Proc. 7th Intern. Symp. on Materials in Environment ESA, SP-390, 2997, 255—266.
16. ECSS-E-10-04A. (2000). Space Engineering: Space Environment, Noordwijk. ESTRC.
17. Gonzalez R. I., Tomczac S. J., Milton T. K., Garton D. G. (2003). Synthesis and atomic oxygen erosion testing of space-subvivable pass (polyhedral oligometric silsesquioxane). Proc. 9th Intern. Symp. on Materials in Environment ESA, 113—117.
18. Grossman E., Gouzman I. (2003). Space environment effects on polymers in low Earth orbit. Nucl. Instrum. and Meth. in Phys. Res., B208, 48—57.
19. Grossman E., Gouzman I., Lempert G., Noter Y., Lifshitz Y. (2004). Assessment of atomic oxygen flux in low Earth orbit ground simulation facilities. J. Spacecraft and Rockets, 41( 3), 356—368.
20. Miller S., Banks B., Waters D. (2006). Investigation into the differences in atomic oxygen erosion yields of materials in ground based facilities compared to those in LEO. Proc. 10th ISMSE and 8th ICPMSE. Collioure. France. Noordwijk: ESTEC, 120—126.
21. Pippin H. G. (2008). Final report of analysis of Boeing specimens from on the effects of space environment on materials experiment. Appendix B. Hampton: NASA Langley Research Center. VA 23681–2199.
22. Reddy M. R. (1995). Review effect on Low Earth orbit atomic oxygen on spacecraft materials. J. Mater. Sci., 2, 281—307.
23. Tagawa M., Yokota K. (2008). Atomic oxygen-induced polymer degradation phenomena in simulated LEO space environment: How do polymers react in a complication space environment. Acta Astronautica, 62(2-3), 203—210.
24. Vered R., Lempert G. D., Grossman E., Haruvy Y., Marom G., Singer G., et. al. (1994). Atomic oxygen erosion of teflon FEP and kapton-H by oxygen from different sources: atomic force microscopy and complementary studies. Proc. 6th ISMSE. ESA, 175—181.
25. Yokota K., Tagawa M. (2007). Comparison polyethylene and polyimides as a fluency monitor of atomic oxygen. J. Spacecraft and Rockets, 4(2), 434—435.
26. Zimcik D. G., Maag C. R. (1988). Result of apparent atomic reactions with spacecraft material during Space Shuttle flight STS-416. J. Spacecraft and Rockets, 25(2), 162—168.