Possible peculiarities of synchrotron radiation in strong magnetic fields

1Lev, BI, 1Semenov, AA, 2Usenko, CV
1Institute of Physics, NAS of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2001, 7 ;(Suppl. 2):084-088
Publication Language: English
Relativistic quantum effects on physical observables of scalar charged particles are studied. Possible peculiarities of their behavior that can be verified in an experiment can confirm several fundamental conceptions of quantum mechanics. For observables independent of charge variable, we propose the relativistic Wigner function formalism that contains explicitly the measurement device frame. This approach can provide the description of charged particles gas (plasma). It differs from the traditional one but is consistent with the Copenhagen interpretation of quantum mechanics. The effects that are connected with this approach can be observed in astrophysical objects, i.e., neutron stars.
1. Aspect A., Roger G., et. al. Time Correlations between Two Sidebands of the Resonance Fluorescence Triplet. Phys. Rev. Lett., 45, 617 (1980);
Aspect A., Grangier P., Roger G. Experimental Test of Realistic Local Theories via Bell's Theorem. Phys. Rev. Lett., 47, 460 (1981).
2. Bell J. S. Speakable and Unspeakable in Quantum Mechanics. (Cambridge Univ. Press, Cambridge, 1987).
3. Blokhintzev D. I. On localization relativistic micro particles in space and time. JINR, R-2631 (Dubna, 1966) [in Russian].
4. Caban P., Rembielinski J. Lorentz-covariant quantum mechanics and preferred frame. Phys. Rev. A, 59, 4187 (1999).
5. De Groot S. R., van Leeuwen W. A., Weert Ch. G. Relativistic kinetic theory. Principles and Applications. (North-Holland, Amsterdam, 1980).
6. Eberhard P. H. Bell's Theorem and the Different Concepts of Locality. Nuov. Cim., 46B, 392 (1978).
7. Feshbach H., Villars F. Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles. Rev. Mod. Phys., 30, 24 (1958).
8. Gerard P., Markovich P. A., Mauser N. J., et al. Homogenization Limits and Wigner Transforms. Comm. Pure Appl. Math., 50, 0323 (1997).
9. Grib A. A., Mamaev S. G., Mostapenko V. M. Vacuum quantum effects in strong fields. (Energoatomizdat, Moscow, 1988) [in Russian].
10. Holland P. R., Kyprianidis A., Marie Z., et al. Relativistic generalization of the Wigner function and its interpretation in the casual stochastic formulation of quantum mechanics. Phys. Rev. A, 33, 4380 (1986).
11. Lev B. I., Semenov A. A., Usenko C. V. Behaviour of π±mesons and synchrotron radiation in a strong magnetic field. Phys. Lett. A, 230, 261 (1997).
12. Menskii M. B. Quantum mechanics: new experiments, new applications, new formulations. Uspekhi fizicheskikh nauk, 170 (6), 631 (2000) [in Russian].
13. Mourad J. The Wigner-Weyl formalism and the relativistic semi-classical approximation. E-print of LANL: /hep-th/9307135.
14. Moyal J. E. Quantum Mechanics as a Statistical Theory. Proc. Cambr. Phil. Soc., 45, 99 (1949).

15. Perelomov A. M. Generalized coherent states and their applications.(Springer, Berlin, 1996).