Application of laser mueller-polarimetry to the investigation of healthy and infected by the wheat streak mosaic virus Apogee variety wheat grown under simulated microgravity conditions
Heading:
1Mischenko, LT, 1Savenkov, SM, 2Oberemok, EA 1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
Kosm. nauka tehnol. 2004, 10 ;(1):091-098 |
https://doi.org/10.15407/knit2004.01.091 |
Publication Language: Ukrainian |
Abstract: Apogee variety wheat plants inoculated by wheat streak mosaic virus isolated by us displayed the reduction of viral reproduction under simulated microgravity conditions. We employed the laser Mueller-polarimetry method for the first time to study simulated microgravity effects on healthy and infected by the wheat streak mosaic virus wheat plants. Our results are indicative of the possibility to apply the laser Mueller-polarimetry procedure to the investigation of structural and functional changes in wheat leaves caused by virus infection and clinorotation.
|
References:
1. Azzam R. M. A., Bashara N. M. Ellipsometry and Polarized Light, 312 p. (Mir, Moscow, 1981) [in Russian].
2. Boiko A. L., Silaeva A. M., Mishchenko L. T., Reshetnik G. V. Peculiarities of ultrastructural organization of the winter wheat mesophyll cells under conditions of virus infection. Citologija i genetika, 31 (5), 71—79 (1997) [in Ukrainian].
3. Vanyushin B. F. Apoptosis in plants. Usp. Biol. Khim., No. 41, 3—38 (2001) [in Russian].
4. Voevodin V. V. Computational foundations of linear algebra, 251 p. (Nauka, Moscow, 1977) [in Russian].
5. Gerrard A., Birch J. M. Introduction to Matrix Optics, 341 p. (Mir, Moscow, 1978) [in Russian].
6. Kanevsky V. A., Sytnik K. M., Ross Yu. K., Shelyag-Sosonko Yu. R. Laser tomography of vegetation, 22 p. (In-t botany AS Ukraine, Kiev, 1992) [in Russian].
7. Kondratyev K. Ya., Kanevsky V. A., Ross Yu. K., et al. Lazer remote sensing of vegetation, 168 p. (GAO AN SSSR, Leningrad, 1987) [in Russian].
8. Levinskikh M. A. Ontogeny, reproduction and metabolism of higher plants in space flight conditions: Extended abstract of Doctor’s thesis, 49 p. (In-t Mediko-biologicheskih problem RAN, Moscow, 2002) [in Russian].
9. Mischenko L. T. The effect of artificial gravity on grows processes and photosynthetic apparatus of Triticum aestivum L. infected by the wheat streak mosaic virus. Kosm. nauka tehnol., 8 (5-6), 66—70 (2002) [in Russian].
10. Oberemok Yu. A., Savenkov S. N. Solution of the Inverse Problem of Polarimetry for Deterministic Objects on the Base of Incomplete Mueller Matrices. Ukr. J. Phys., 47 (8), 803—807 (2002) [in Ukrainian].
11. Posudin Yu. I. Spectroscopic monitoring of the agrosphere, 128 p. (Urozhaj, Kyiv, 1998) [in Ukrainian].
12. Sychev V. N., Shepelev Ye. Ya., Meleshko G. I., et al. Biological Life Support Systems: Investigations on Board the Orbital Complex Mir. Aviakosmicheskaja i jekologicheskaja medicina (Rossija), No. 1, 10—16 (1999) [in Russian].
13. Tuchin V. V., Shubochkin L. P. Lasers applications in ophthalmology, Pt. 1, 243 p. (CNII «Jelektronika», Moscow, 1984) [in Russian].
14. Ushenko O. G., Pishak V. P. Laser polarimetric diagnostics in biology and medicine, 302 p. (Med. akademija, Chernivtsi, 2000) [in Ukrainian].
15. Shercliff W. A. Polarized Light: Production and Use, 254 p. (Mir, Moscow, 1965) [in Russian].
16. Brakke M. K., et al. Degradation of wheat streak mosaic virus capsid protein during leaf senescence. Phytopathology, 80 (12), 1401 — 1405 (1990).
https://doi.org/10.1094/Phyto-80-1401
https://doi.org/10.1094/Phyto-80-1401
17. Brosseau Ch. Fundamentals of polarized light, 345 p. (Wiley, New York, 1998).
18. Bugbee B. Engineering plants for spaceflight environments. Amer. Soc. Gravitational and Space Biol. Bull., 12, 67—74 (1999).
19. Bugbee B., Koerner G., Albrechtsen R., et al. "USU-Apogee". A new high-yielding dwarf wheat cultivar for life support systems. In: 31 Scientific Assembly of COSPAR, 205 (The University of Birmingham, England, 1996).
20. Cloud S. R. Group theory and polarization algebra. Optik, No. 7, 26—36 (1986).
21. Cloude S. R., Pottier E. Concept of polarization entropy in optical scattering. Opt. Ing., 34 (6), 1599— 1610 (1995).
22. Kordyum E. L. Plant reproduction systems in microgravity: experimental data and hypotheses. Adv. Space Res., 21 (8-9), 1111 — 1120 (1998).
https://doi.org/10.1016/S0273-1177(97)00198-1
23. Mar'yenko V. V., Savenkov S. N. Representation of arbitrary Mueller matrix in the basis of matrices of circular and linear anisotropy. Opt. and Spectroscopy, 76 (1), 94—96 (1994).
24. McDaniel E. B., McClain S. C., Hsu J. W. P. Nanometer scale polarimetry studies using a near-field scanning optical microscope. Appl. Opt., 37 (1), 84—92 (1998).
25. Mishchenko L. T., Silayeva A. M. Effect of clinostating on physiological and biochemical characteristics of wheat plants infected by the streak mosaic virus of wheat (SMVW). Horticulture & Vegetable Crowing (Lithuania), 17 (3), 386—394 (1998).
26. Raven P. N., Jordan D. L., Smith C. E. Polarized directional reflectance from laurel and mullein leaves. Opt. Eng., 41 (5), 1002—1012 (2002).
27. Savenkov S. N. Optimization and structuring of the instrument matrix for polarimetric measurements. Opt. Eng., 41 (5), 965—972 (2002).
28. Savenkov S. N., Muttiah R. S., Oberemok Y. A. Transmitted and reflected scattering matrices from an English Oak leaf. Appl. Opt., 42 (24), 4955—4962 (2003).
29. Smith M. H., Lompado A., Burke P. Mueller matrix imaging polarimetry in dermatology. Proc. SPIE, 3911, 132—137 (2000).
30. Egan W. G., Israel S., Johnson W. R., Whitehead V. S. High-resolution space-shuttle polarimetry for farm crop classification. Appl. Opt., 31 (10), 1542—1548 (1992).