Differential rotation of solar structural formations from observations in the He I λ 1083 nm line
Heading:
1Zyelyk, Ya.I, 2Stepanian, NN, 3Andreyeva, OA 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine 2Scientific-Research Institute “Crimean Astrophysical Observatory” of the Ministry for Education and Science of Ukraine, Nauchny, AR Crimea, Ukraine 3Scientific-Research Institute “Crimean Astrophysical Observatory” of the Ministry for Education and Science of Ukraine, Nauchny, Crimea, Ukraine |
Kosm. nauka tehnol. 2009, 15 ;(1):44-56 |
https://doi.org/10.15407/knit2009.01.044 |
Publication Language: Russian |
Abstract: Using spectral analysis methods, we estimated some characteristics of the differential rotation for three types of the solar structures observed in the upper chromosphere, in 10-degree latitude zones in the characteristic period intervals during last three cycles of the solar activity, namely, 1) significant stationary periodic rotation components during three cycles; 2) temporal variationsof periodic rotation components at different latitudes within the bounds of each cycle on the basis of the results of the spectral analysis in the sliding temporal one-year window with the half-year shift for the overall 26-year observation interval. It is found that for all the latitudinal distributions of all structure types the total power of processes in each of several intervals of significant rotation periods varies with time both during each cycle and from cycle to cycle. The total power of the processes for the active regions with spots and floccules differs essentially at high latitudes and is close to good agreement at low ones. The total power variations with latitude for coronal holes differ essentially from its variations for active regions and floccules. The differential rotation measure for all the solar structures under consideration varies with time, even the moments of change of its sign are observed. We analyzed briefly the evolution factors of differential rotation of solar formations under consideration with latitude and time, expressing in various nature, sizes, lifetime of these structures, depth of their sources occurrence and character of proper motions.
|
Keywords: differential rotation, spectral analysis, Sun |
References:
1. Andryeyeva O. A., Zyelyk Ya. I., Stepanian N. N. Rotation of solar structures in the upper chromosphere. Izv. Krym. astrofiz. observatorii, 102, 84–98 (2006) [in Russian].
2. Badalyan O. G., Obridko V. N., Rybák J., Sýkora J. Quasibiennial Oscillations of the North-South Asymmetry. Astron. zhurn., 82 (8), 740–752 (2005) [in Russian].
3. Bendat J. S., Piersol A. G. Random Data: Analysis and Measurement Procedures, 540 p. (Mir, Moscow, 1989) [in Russian].
4. Vasil'eva V. V., Makarov V. I., Tlatov A. G. Rotation cycles of the sector structure of the solar magnetic field and its activity. Pis'ma v Astron. zhurn., 28 (3), 228–234 (2002) [in Russian].
5. Zyelyk Y. I., Stepanyan N. N., Andryeyeva O. A. Time variations of global characteristics of Sun rotation. Problemy upravlenija i informatiki, No. 1, 127–135 (2007) [in Russian].
https://doi.org/10.1615/JAutomatInfScien.v39.i2.50
https://doi.org/10.1615/JAutomatInfScien.v39.i2.50
6. Zyelyk Y. I., Stepanyan N. N., Andryeyeva O. A. On applying the apparatus of analyzing the time series to estimation of solar structures rotations in the upper chromosphere. Problemy upravlenija i informatiki, No. 3, 102–115 (2006) [in Russian].
https://doi.org/10.1615/JAutomatInfScien.v38.i6.30
https://doi.org/10.1615/JAutomatInfScien.v38.i6.30
7. Zyelyk Ya. I., Stepanian N. N., Andryeyeva O. A. Spectral methods for analyzing the rotation of solar structures. Izv. Krym. astrofiz. observatorii, 103, 56–69 (2007) [in Russian].
8. Zyelyk Y. I., Stepanyan N. N., Andryeyeva O. A. Temporal-latitudinal variations of solar structures rotation for three cycles of solar activity. Problemy upravlenija i informatiki, No. 1, 139–146 (2008) [in Russian].
https://doi.org/10.1615/JAutomatInfScien.v40.i2.60
https://doi.org/10.1615/JAutomatInfScien.v40.i2.60
9. Kichatinov L. L. The differential rotation of stars. Uspekhi Fizicheskikh Nauk, 175 (5), 475–494 (2005) [in Russian].
https://doi.org/10.3367/UFNr.0175.200505b.0475
https://doi.org/10.3367/UFNr.0175.200505b.0475
10. Kotov V. A., Haneychuk V. I., Tsap T. T. New measurements of the mean magnetic field of the Sun and its rotation. Astron. zhurn., 87 (3), 218–222 (1999) [in Russian].
11. Tlatov A. G. Long-term variations in the rotation and distribution of large-scale magnetic fields of the Sun: Extended abstract of Doctor’s thesis, 32 p. (The Central Astronomical Observatory of the RAS at Pulkovo, St. Petersburg, 2006) [in Russian].
12. Stepanyan N. N. Differential-rotation variations in solar background magnetic fields. Izv. Krym. astrofiz. observatorii, 67, 59–65 (1983) [in Russian].
13. Stepanyan N. N. Coronal holes and background magnetic fields on the Sun. In: Solar cycle [Solnechnyj cikl]: Sbornik nauch. tr., 44–55 (FTI RAN, 1993) [in Russian].
14. Brandenburg A. et al. Magnetic structures in a dynamo simulation. J. Fluid Mech., 306, 325–352 (1996).
https://doi.org/10.1017/S0022112096001322
https://doi.org/10.1017/S0022112096001322
15. Brummell N. H. Turbulent compressible convection with rotation. II. Mean flows and differential rotation. Astrophys. J., 493, 955–969 (1998).
https://doi.org/10.1086/305137
https://doi.org/10.1086/305137
16. Howard R. LaBonte B. J. The Sun is observed to be a tor-sional oscillator with a period of 11 years. Astrophys. J., 239, pt. 2, L33–L36 (1980).
17. Kippennhahn R. Differential rotation in stars with convective envelopes. Astrophys. J., 137, 664–678 (1963).
https://doi.org/10.1086/147539
https://doi.org/10.1086/147539
18. Kapyla P. J. et al. Local models of stellar convection: Reynolds stresses and turbulent heat transport. Astron. and Astrophys., 325, 793–816 (2004).
https://doi.org/10.1051/0004-6361:20035874
https://doi.org/10.1051/0004-6361:20035874
19. LaBonte B. J., Howard R. Torsional waves on the Sun and the activity cycle. Solar Phys., 75 (1–2), 161–178 (1982).
https://doi.org/10.1007/BF00153469
https://doi.org/10.1007/BF00153469
20. Moss D., Vilhu O. Models of stellar differential rotation on the lower main sequence. Astron. and Astrophys., 119 (1), 47–53 (1983).
21. Persival D.B., Walden A.T. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, 481 p. (Cambridge University Press, 1993).
https://doi.org/10.1017/CBO9780511622762
https://doi.org/10.1017/CBO9780511622762
22. Pidatella R.M. et al. The role of inhomogeneous heat transport and anisotropic momentum exchange in the dynamics of stellar convection zones — Application to models of the Sun's differential rotation. Astron. and Astrophys., 156 (1–2), 22–32 (1986).
23. Rüdiger G. Differential rotation and stellar convection: sun and solar-type stars, 328 p. (Gordon and Breach Science Publishers, New York, 1989).
24. Rüdiger G. Reynolds stresses and differential rotation. I. On recent calculations of zonal fluxes in slowly rotating stars. Geophys. Astrophys. Fluid Dyn., No. 1, 239–261 (1980).
Available: http://www.informaworld.com/smpp/title~content=t713642804~db=all~tab=issueslist~branches=16 — v1616
Available: http://www.informaworld.com/smpp/title~content=t713642804~db=all~tab=issueslist~branches=16 — v1616
25. Rüdiger G., Hollerbach R. The Magnetic Universe. Geophysical and astrophysical dynamo theory, 328 p. (WILEY-VCH Verlag GmbH Co. KGaA, Weinheim, 2004).
https://doi.org/10.1002/3527603654
https://doi.org/10.1002/3527603654
26. Schmidt W. Models of solar differential rotation. Geophys. Astrophys. Fluid Dyn., 21, 27–57 (1982).
https://doi.org/10.1080/03091928208209004
https://doi.org/10.1080/03091928208209004
27. Vorontsov S. V. et al. Helioseismic measurement of solar torsional oscillations. Science, 296, 101–103 (2002).
https://doi.org/10.1126/science.1069190
https://doi.org/10.1126/science.1069190
28. Welch P. D. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoustics, Vol. AU–15, 70–73 (June 1967).