On the possibility of langmuir turbulence development at the early stage of a flare process

1Kryshtal, AN, 1Gerasimenko, SV, 2Voitsekhovska, AD, 1Soloviov, AA
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2009, 15 ;(5):59-67
Publication Language: Russian
We investigated some conditions of the appearance of high-frequency electron langmuir wave instability in a plasma near the foot-point of the loop structure at the early stage of a flare process in a solar active region (AR). The process of the instability rise and development is a result of the combined action of the following factors: the existence of a weak large-scale electric field in the loop current circuit, influence of the pair Coulomb collisions, loss of electron momentum due to the interaction with the pulsations of saturated Bernstein turbulence and Landau damping. It is assumed that near the loop footpoint, in the region of «kilogauss» magnetic fields, the plasma density and temperature are determined in the framework of the semiempirical model FAL (Fontenla-Avrett-Loeser) for solar atmosphere which takes into account the helium diffusion process. We performed the comparison of the obtained results with the analogous results derived in the framework of alternative models MAVN (Machado-Avrett-Vernazza-Noyes) and VAL (Vernazza-Avrett-Loeser) for the solar atmosphere.
Keywords: active region, langmuir wave, loop structure
1. Altyntsev A. T., Banin V. G., Kuklin G. V., Tomozov V. M. Solar Flares, 247 p. (Nauka, Moscow, 1982) [in Russian].
2. Galeev A. A., Sagdeev R. Z. Nonlinear Plasma Theory. In: Voprosy teorii plazmy, Is. 7, 3—145 (1973) [in Russian].
3. Griem H. R. Spectral line broadening by plasmas, 492 p. (Mir, Moscow, 1978) [in Russian].
4. De Jager C. Structure and dynamics of the solar atmosphere, 376 p. (Izd-vo inostr. lit., Moscow, 1962) [in Russian].
5. Zaitsev V. V., Stepanov A. V., Tsap Yu. T. On the problems of physics of solar and stellar flares. Kinematika i Fizika Nebesnykh Tel, 10 (6), 3—31 (1994) [in Russian].
6. Kryshtal A. N., Gerasimenko S. V. High-frequency Langmuir wave instability in preflare plasma. Kosm. nauka tehnol., 11 (1-2), 68—74 (2005) [in Russian].
7. Kryshtal' A. N., Gerasimenko S. V. On the sequence of the rise of plasma wave instabilities near the footpoints of solar arch structures at the early stages of a flare process. Kinematika i Fizika Nebesnykh Tel, 21 (5), 352—367 (2005) [in Russian].
8. Kryshtal A. N. Small-scale instabilities in preflare loop plasma in solar active region: Extended abstract of Doctors thesis, Main Astronomical Observatory of NAS of Ukraine, 40 p. (Kyiv, 2008) [in Ukrainian].
9. Maksimov V. P., Tomozov V. M. On possible manefestations of the turbulent Stark effect in some flare models. In: God solnechnogo maksimuma [Solar maximum year]: Proc. Intern. conf., Simferopol, March 27—31, 1981, Vol. 1, 168—177 (IZMIRAN, Moscow, 1981) [in Russian].
10. Somov B. V. Solar Flares. In: Itogi nauki i tehniki, VINITI, Astronomija, 34, 78—135 (1987) [in Russian].
11. Fontenla J. M., Avrett E. H., Loeser R. Energy balance in solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J., 406 (1), 319—345 (1993).
12. Foukal P., Hinata S. Electric fields in the solar atmosphere: a review. Solar Phys., 132 (1), 307—330 (1991).
13. Harra I. K., Mathews S. A., Culhane J. L. Nonthermal velocity evolution in the precursor phase of a solar flare. Astrophys. J., 549 (2), L245— L248 (2001).
14. Heyvaerts J., Priest E., Rust D. An emerging flux model for the solar flare phenomenon. Astrophys. J., 216 (1), 213—221 (1977).
15. Kryshtal A. N., Kucherenko V. P. A possible excitation mechanism for a longitudinal wave instability in a plasma by a quasistatic electric field. J. Plasma Phys., 53 (pt. 2), 169—184 (1995).
16. Machado M. E., Avrett E. H., Vernazza J. E., Noyes R. W. Semiempirical models of chromospheric flare regions. Astrophys. J., 242 (1), 336—351 (1980).
17. Miller I. A., Cargil P. I., Emslie A. G., et al. Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res., 102A (7), 14631—14659 (1997).
18. Pines D., Schrieffer J. R. Collective behavior in solid-state plasmas. Phys. Rev., 124 (5), 1387— 1400 (1961).
19. Poletto G., Kopp R. A. Macroscopic electric fields during two-ribbon flares. In: The lower atmosphere of solar flares, Ed. by D. Niedeg, N 50, 453—465 (Sacramento Peak, NM, 1986).
20. Solanki S. K. Small-scale solar magnetic fields: an overview. Space Sci. Revs., 63, 1— 183 (1993).

21. Vernazza J. E., Avrett E. H., Loeser R. Structure of solar chromosphere. III. Models EUV brightness components of the quiet Sun. Astrophys. J. Suppl. Ser., 45, 635—725 (1981).