Hydrodynamic model for generation of global poloidal flow of the Sun

1Loginov, AA, 1Salnikov, NN, 1Cheremnykh, OK, 2Krivodubskij, VN, 1Maslova, NV
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2011, 17 ;(1):29-35
https://doi.org/10.15407/knit2011.01.029
Publication Language: Russian
Abstract: 
We propose the semi-empirical hydrodynamic model for global poloidal flow generation caused by the instability of the solar differential rotation. Spatial modes and increment of poloidal flow are determined.
Keywords: differential rotation, hydrodynamic model, poloidal flow
References: 
1.  Allen C.W. Astrophysical Quantities, 448 p. (Mir, Moscow, 1977) [in Russian].
2.  Vainshtein S. I., Zeldovich Ia. B., Ruzmaikin A. A. The turbulent dynamo in astrophysics, 352 p. (Nauka, Moscow, 1980) [in Russian].
3. Gibson E. G. The Quiet Sun, 408 p. (Mir, Moscow, 1977) [in Russian].
4.  Kitchatinov L. L. The differential rotation of stars.  Uspehi fiz. nauk, 175 (5), 475— 494 (2005) [in Russian].
5.  Loginov A. A., Sal'nikov N. N., Cheremnykh O. K., et al. On hydrodynamical mechanism of generation of global poloidal flow of the Sun. Kinematika i Fizika Nebes. Tel, 27 (5), 3—11 (2011) [in Russian].
6.  Loginov A. A., Samoilenko Yu. I., Tkachenko V. A. Excitation of meridional flow by differential rotation in Earth's liquid core. Kosm. nauka tehnol., 6 (2-3), 53—68 (2000) [in Russian].
https://doi.org/10.15407/knit2000.02.053
7.  Monin A. S. The solar cycle, 68 p. (Gidrometeoizdat, Leningrad, 1980) [in Russian].
8. Tassoul J.-L. Theory of rotating stars, 472 p. (Mir, Moscow, 1982) [in Russian].
9. Basu S., Antia H. M. Characteristics of solar meridional flows during solar cycle 23. Astrophys. J., 717 (1), 488—495 (2010).
https://doi.org/10.1088/0004-637X/717/1/488
10. Carrington R. C. Observations of the spots of the Sun, 264 p. (London, 1863).
11. Christensen-Dalsgaard J., Däppen W., Ajukov S. V., et al. The current state of solar modeling. Science, 272 (5266), 1286—1292 (1996).
https://doi.org/10.1126/science.272.5266.1286
12. Dikpati M. Simulating solar ‘climate’. In: Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, Eds T. Tsuda, R. Fujii, K. Shibata, M. A. Geller, 171—199 (Tokyo, 2009).
13. Dikpati M., Gilman P. Flux-transport dynamos with α-effect from global instability of tachocline differential rotation: a solution for magnetic parity selection in the Sun. Astrophys. J., 559, 428—442 (2001).
https://doi.org/10.1086/322410
14. Ferriz-Mass A., Schmitt D., Schüssler M. A dynamo effect due to instability of magnetic flux tubes. Astron. and Astrophys., 289, 949—956 (1994).
15. Giles P. M., Duval T. L. Jr., Scherrer P. H., Bogart R. S. A subphotospheric flow of material from the Sun’s equator to its poles. Nature, 390, 52—54 (1997).
https://doi.org/10.1038/36294
16. Hathaway D.H. Gilman P., Harvey J. W., et al. GONG observations of solar surface flows. Science, 272, 1306—1309 (1996).
https://doi.org/10.1126/science.272.5266.1306
17. Nandy D., Choudhuri A. R. Explaining the latitudinal distribution of sunspots with deep meridional flow. Science, 296, 1671—1674 (2002).
https://doi.org/10.1126/science.1070955

18. Thompson M. J., Christensen-Dalsgaard J., Miesch M. S., Toomre J. The internal rotation of the Sun. Annu. Rev. Astron. and Astrophys., 41, 599—643 (2003).
https://doi.org/10.1146/annurev.astro.41.011802.094848