Development of carbon-containing marsian dust analogue and assesment of its effects on the key charasteristics of the synaptic neurotransmission in rat brain nerve terminals

1Pastukhov, AO, 1Dudarenko, MV, 1Galkin, MO, 1Krisanova, NV, 1Nazarova, AG, 1Pozdnyakova, NG, 1Borisova, TO
1Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
Space Sci.&Technol. 2017, 23 ;(2):32-40
https://doi.org/10.15407/knit2017.02.032
Publication Language: Ukrainian
Abstract: 
Carbon is widely distributed in the Martian dust, meteorites, and interstellar space. In this study, we prepared carbon-containing Martian dust analogue, which consists of inorganic Martian dust simulant derived from volcanic ash (JSC, Mars-1A, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin, USA) and carbon (nanodiamonds). The aim of the study was to analyze the effects of carbon-containing Martian dust analogue on the key characteristics of the synaptic neurotransmission. It was shown that the carbon-containing Martian dust analogue enriched with nanodiamonds significantly reduces the initial rate of accumulation and increases extracellular levels of neurotransmitters L-[14C]glutamate and [3H]GABA (g-aminobutyric acid) in isolated rat brain nerve terminals. These effects of carbon-containing Martian dust analogue were mainly associated with the activity of its carbon component, but not with inorganic components. So, carbon component of native Martian dust can have deleterious effects on extracellular glutamate and GABA homeostasis in the CNS, and so glutamate- and GABA-ergic neurotransmission, disbalancing excitatory and inhibitory signals. Thus, for human health, the toxic effects of carbon structures in native Martian dust, soil, and meteorites may be greater than the effect of the inorganic components. 
Keywords: brain nerve terminals, GABA transport, GABA-ergic neurotransmission, glutamate transport, glutamatergic neurotransmission, Martian dust analogue
References: 
1. Abbott N. J. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell. Mol. Neurobiol., 20, 131—147 (2000).
https://doi.org/10.1023/A:1007074420772
2. Bogatyreva G. P., Marinich M. A., Oleinik G. S. et al. The effect of the methods of recovering diamond nanopowders on their physicochemical properties. J. Superhard Mater., 33, 208—216 (2013)
https://doi.org/10.3103/S1063457611030105
3. Borisova T., Kasatkina L., Ostapchenko L. The proton gradient of secretory granules and glutamate transport in blood platelets during cholesterol depletion of the plasma membrane by methyl- -cyclodextrin. Neurochem. Int., 59, 965—975 (2011)
https://doi.org/10.1016/j.neuint.2011.07.007
4. Borisova T. A., Krisanova N. V. Presynaptic transportermediated release of glutamate evoked by the protonophore FCCP increases under altered gravity conditions. Adv. Sp. Res., 42, 1971—1979 (2008)
https://doi.org/10.1016/j.asr.2008.04.012
5. Borisova T., Krisanova N., Sivko R., Borysov A. Cholesterol depletion attenuates tonic release but increases the ambient level of glutamate in rat brain synaptosomes. Neurochem. Int., 56, 466—478 (2010)
https://doi.org/10.1016/j.neuint.2009.12.006
6. Bourdon J. A., Saber A. T., Jacobsen N. R., et al. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part. Fibre Toxicol., 9, 5 (2012).
https://doi.org/10.1186/1743-8977-9-5
7. Chatterjee A., Wang A., Lera M., Bhattacharya S. Lunar soil simulant uptake produces a concentration-dependent increase in inducible nitric oxide synthase expression in murine RAW 264.7 macrophage cells. J. Toxicol. Environ. Health. A., 73, 623—626 (2010).
https://doi.org/10.1080/15287390903578182
8. Cotman C. W. Isolation of synaptosomal and synaptic plasma membrane fractions. Methods Enzymol., 31, 445— 452 (1974).
https://doi.org/10.1016/0076-6879(74)31050-6
9. Danbolt N. C. Glutamate uptake. Prog. Neurobiol., 65, 1—105 (2001).
https://doi.org/10.1016/S0301-0082(00)00067-8
10. Garai J., Haggerty S. E., Rekhi S., Chance M. Infrared absorption investigations confirm the extraterrestrial origin of carbonado diamonds. Astrophys. J., 653, 153— 156 (2006).
https://doi.org/10.1086/510451
11. Krisanova N., Sivko R., Kasatkina L., Borisova T. Neuroprotection by lowering cholesterol: A decrease in membrane cholesterol content reduces transportermediated glutamate release from brain nerve terminals. Biochim. Biophys. Acta — Mol. Basis Dis., 1822, 1553— 1561 (2012).
https://doi.org/10.1016/j.bbadis.2012.06.005
12. Lam C. -W., James J. T., McCluskey R., et al. Pulmonary toxicity of simulated lunar and martian dusts in mice: I. Histopathology 7 and 90 days after intratracheal instillation. Inhal. Toxicol., 14, 901—916 (2002)
.https://doi.org/10.1080/08958370290084683
13. Lam C. -W., James J. T., Latch J. N., et al. Pulmonary toxicity of simulated lunar and martian dusts in mice: Ii. Biomarkers of acute responses after intratracheal instillation. Inhal. Toxicol. 14, 917—928 (2002).
14. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem., 155, 243—248 (1986).
https://doi.org/10.1016/0003-2697(86)90432-X
15. Linnarsson D., Carpenter J., Fubini B., et al. Toxicity of lunar dust. Planet. Space Sci., 74, 57—71 (2012).
https://doi.org/10.1016/j.pss.2012.05.023
16. Lin Y., Goresy A. El, Hu S., et al. NanoSIMS analysis of organic carbon from the Tissint Martian meteorite: Evidence for the past existence of subsurface organicbearing fluids on Mars. Meteorit. Planet. Sci., 49, 2201— 2218 (2014)
.https://doi.org/10.1111/maps.12389
17. Oberdrster G., Sharp Z., Atudorei V., et al. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol., 16, 437—445 (2004).
18. Orel V. E., Shevchenko A. D., Bogatyreva G. P., et al. Magnetic characteristics and anticancer activity of a nanocomplex consisting of detonation nanodiamond and doxorubicin. J. Superhard Mater., 34, 179—185 (2012)
.https://doi.org/10.3103/S1063457612030057
19. Rehders M., Grosshuser B. B., Smarandache A., et al. Effects of lunar and mars dust simulants on HaCaT keratinocytes and CHO-K1 fibroblasts. Adv. Sp. Res., 47, 1200—1213 (2011).
https://doi.org/10.1016/j.asr.2010.11.033
20. Wallace W. T., Taylor L. A., Liu Y., et al. Lunar dust and lunar simulant activation and monitoring. Meteorit. Planet. Sci. Arch., 44, 961—970 (2009). 
https://doi.org/10.1111/j.1945-5100.2009.tb00781.x