High-Frequency Gravitational Wave research and application to exoplanet studies
Heading:
1Baker, Jr, RML 1American Association for Advancement of Science, USA |
Space Sci.&Technol. 2017, 23 ;(3):47-63 |
https://doi.org/10.15407/knit2017.03.047 |
Publication Language: English |
Abstract: A discussion of the history of High-Frequency Gravitational Wave (HFGW) research is first presented. Over the years until modern times, starting with the first mention of Gravitational Waves by Poincaré in 1905 and the definition of HFGWs in 1961 by Robert L. Forward, the discussion continues concerning the international research efforts to detect HFGWs. The article highlights the accomplishments of HFGW researchers in China, Russia, Ukraine, England, Australia, Japan, Germany, Spain, Italy, and the United States. Comparisons are made with Low-Frequency Gravitational Wave (LFGW) research, especially concerning the Laser Interferometer Gravitational Observatory or LIGO. In fine, there are presented several interesting perspectives concerning cosmology, the speed of time and, especially, exoplanet applications of HFGWs.
|
Keywords: exoplanets, gravitational waves, HFGW Detectors, HFGWs, high-frequency gravitational waves, LIGO, speed of time, Starshot |
References:
1. Poincaré Jules Henri. C.R. Ac. Sci., Paris, 140, 1504 (1905), and also appears in Oeuvres, Volume 9, p. 489, Gauthier-Villars, Paris, (1954).
2. Einstein A. Die Grundlage der allgemeinen Relativitts theorie. Annalen der Physik, 49, 769—822 (1916).
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
3. Einstein A. Uber Gravitationswellen. In: Sitzungsberichte der Kniglich Preussischen Akadee der Wissenschaften, 154—167 (Berlin, 1918).
4. Balbus S. A. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations (2016)
arXiv.org > astro-ph > arXiv:1604.05974v2, https://arxiv.org/pdf/1604.05974.pdf
arXiv.org > astro-ph > arXiv:1604.05974v2, https://arxiv.org/pdf/1604.05974.pdf
5. Einstein A., Rosen N. On Gravitational Waves. J. Franklin Institute, 223, 3—54 (1937).
https://doi.org/10.1016/S0016-0032(37)90583-0
https://doi.org/10.1016/S0016-0032(37)90583-0
6. Weinstein G. Einstein and Gravitational Waves 1936—1938. (2016), https://arxiv.org/ftp/arxiv/papers/1602/1602.04674.pdf.
7. Weber J. Detection and generation of gravitational waves. Phys. Revw, 117 (N 1), 306—313 (1960).
https://doi.org/10.1103/PhysRev.117.306
https://doi.org/10.1103/PhysRev.117.306
8. Forward R. L., Bakerv R. M. L., Jr. “Gravitational Gradients, Gravitational Waves and the ‘Weber Bar’,”
Lecture given at the Lockheed Astrodynamics Research Center, 650 N. Sepulveda Bel Air, California, USA, November 16th, 1961 Lockheed Research Report RL 15210, based upon notes taken by Samuel Herrick a Lockheed Consultant (Forward coined the term “High-Frequency Gravitational Waves” and Baker suggested their use to monitor extraterrestrial intelligence communications) The lecture was based upon work with the Weber bar and gravity gradients: Joseph Weber (1960), “Detection and generation of gravitational waves,” Physics Review, Volume 117, Number 1, pp.306—313. and W. B. Klemperer and Robert M. L. Baker, Jr., (1957). “Satellite Librations,” Astronautica Acta 3, pp.16—27.
9. Gertsenshtein M. Wave resonance of light and gravitational waves. Sov. Phys. JETP, 14 (N 1), 84—85 (1962).
10. Gertsenshtein M. E., Pustovoit V. I. On the detection of low frequency gravitational waves. Sov.t Phys. JTEP, 16, 433—435 (1963).
11. Abramovici A., Althouse W. E., Drever R. W. P., et al. LIGO: The Laser Interferometer Gravitational-Wave Observatory, Science, 256, 325—333 (1992).
https://doi.org/10.1126/science.256.5055.325
https://doi.org/10.1126/science.256.5055.325
12. Halpern L. E., Laurent B. On the gravitational radiation of microscopic systems. Il Nuovo Cimento, 33 (N 3), 728—751 (1964).
https://doi.org/10.1007/BF02749891
https://doi.org/10.1007/BF02749891
13. Grishchuk L. P., Sazhin M. V. Emission of gravitational waves by an electromagnetic cavity. Sov. Phy. JETP, 38 (N 2), 215—221 (1974).
14. Chapline G. F., Nuckolls J., Woods L. L. Phys. Revw D, 10 (N 4), 1064—1065 (1974).
https://doi.org/10.1103/PhysRevD.10.1064
14. Chapline G. F., Nuckolls J., Woods L. L. Phys. Revw D, 10 (N 4), 1064—1065 (1974).
https://doi.org/10.1103/PhysRevD.10.1064
15. Braginsky V. B., Rudenko V. N. Gravitational waves and the detection of gravitational radiation, [Section 7: “Generation of gravitational waves in the laboratory,” Physics Report (Review section of Physics Letters), Volume 46, N 5, P. 165—200 (1978).
https://doi.org/10.1016/0370-1573(78)90192-8
https://doi.org/10.1016/0370-1573(78)90192-8
16. Dehnen H., Romero-Borja F. Generation of GHz – THz High-Frequency Gravitational Waves in the laboratory,” paper HFGW-03-102, Gravitational-Wave Conference, The MITRE Corporation, May 6—9, P. 22 (2003),
17. Romero-Borja F., Dehnen H. Generation of gravitational radiation in the laboratory. Z. Naturforsch, 36a, 948—955 (1981),
18. Cruise A. M. An Interaction between gravitational and electromagnetic waves. Mon. Notic. Roy. Astron. Soc., 204, 485—482 (1983).
https://doi.org/10.1093/mnras/204.2.485
https://doi.org/10.1093/mnras/204.2.485
19. Cruise A. M. An electromagnetic detector for very high-frequency gravitational waves. Class. Quantum Grav., 17, 2525—2530 (2000),
20. Ingley R. M. J., Cruise A. M. An electromagnetic detector for high frequency gravitational waves, 4th Edoardo Amaldi Conference (2001).
21. Cruise A. M., Ingley R. M. J. A correlation detector for very high frequency gravitational waves, Class. Quantum Grav., 22, 5479—5481 (2005).
https://doi.org/10.1088/0264-9381/22/10/046
https://doi.org/10.1088/0264-9381/22/10/046
22. Cruise M. Operational Performance of the Birmingham 100 MHz Detector and Upper Limits on the Stochastic Background, Amaldi 7 Gravitational Wave Conference, July 9, 2007, Sydney, Australia (2007).
23. Cruise M. Very High Frequency Gravitational Waves, Gravitational Wave Advanced Detector Workshop (GWADW), Elba Conference, 17 May, (2008), https://indico.pi.infn.it/contributionDisplay.py?contribId=132&sessionId...
24. Tobar M. E., Blair D. G. Parametric transducers for resonant bar gravitational wave antenna. J. Phys. D: Appl. Phys., 26, 2276—2291 (1993).
https://doi.org/10.1088/0022-3727/26/12/028
https://doi.org/10.1088/0022-3727/26/12/028
25. Blair D. G., et al. High Sensitivity Gravitational-Wave Antenna with Parametric Transducer Readout. Phys. Rev. Lett., 74 (N 1), (1995).
https://doi.org/10.1103/PhysRevLett.74.1908
https://doi.org/10.1103/PhysRevLett.74.1908
26. Hulse R. A., Taylor J. H. Discovery of a pulsar in a binary system. Astrophys. J., 195, L51 (1975).
https://doi.org/10.1086/181708
https://doi.org/10.1086/181708
27. Esposito L. W., Harrison E. R. Properties of the Hulse-Taylor binary pulsar system. Astrophys. J., 196, L1—L2 (1975).
https://doi.org/10.1086/181729
https://doi.org/10.1086/181729
28. Taylor J. H., Weisberg J. M. A new test of general relativity – gravitational radiation and the binary pulsar PSR 1913-16. Astrophys. J., 253, 908—920 (1982).
https://doi.org/10.1086/159690
https://doi.org/10.1086/159690
29. Fontana G. A possibility of emission of high frequency gravitational radiation from junctions between d-wave and s-wave superconductors, Preprint, Faculty of Science, University of Trento, 38050 Povo (TN), Italy, pp. 1—8 (1998), “.
http://xxx.lanl.gov/html/cond-mat/9812070
http://xxx.lanl.gov/html/cond-mat/9812070
See also Fontana G. High Temperature Superconductors as Quantum Sources of Gravitational Waves: the HTSC GASER. In: Modanese G, Robertson G. A., Eds. Gravity-Superconductors Interaction: Theory and Experiment. Bentham 2012; Ch. 3. G. Fontana, Directions for gravitational wave propulsion. J. Space Expl., 1 (2012) FP8-FP16.
30. R. Clive Woods, Robert M. L. Baker, Jr., Fangyu Li, Gary V. Stephenson, Eric W. Davis and Andrew W. Beckwith, “A new theoretical technique for the measurement of high-frequency relic gravitational waves.” J. Mod. Phys., 2 (N 6), 498—518 (2011). The Abstract is available at:
http://vixra.org/abs/1010.0062 and the manuscript is available at: http://www.gravwave.com/docs/J.%20of%20Mod.%20Phys%202011.pdf.
http://doi.org/10.4236/jmp.2011.26060.
http://vixra.org/abs/1010.0062 and the manuscript is available at: http://www.gravwave.com/docs/J.%20of%20Mod.%20Phys%202011.pdf.
http://doi.org/10.4236/jmp.2011.26060.
31. Nishizawa Atsushi, Kawamura Seiji, Akutsu Tomotada, Arai Koji, Yamamoto Kazuhiro, Tatsumi Daisuke, Nishida Erina, Sakagami Masa-aki, Chiba Takeshi, Takahashi Ryuichi, and Sugiyama Naoshi. Laser-interferometric detectors for gravitational wave backgrounds at 100 MHz: Detector design and sensitivity. Phys. Rev. D , 77 (N 2), 022002 (2008)
http://doi.org/PhysRevD.77.022002.
http://doi.org/PhysRevD.77.022002.
32. Shawhan P. S. Gravitational Waves and the Effort to Detect them.” Amer. Sci., 92 (4), 350—356 (2004).
33. Davis Eric W. Laboratory generation of high-frequency gravitons via quantization of the coupled Maxwell-Einstein fields,” paper HFGW-03-125, Gravitational-Wave Conference, The MITRE Corporation, May 6—9. (2003).
34. Millis Marc G. and Davis Eric W. Frontiers of Propulsion Science, Progress in Astronautics and Aeronautics Series, 227, Published by AIAA, 739 pages, ISBN-10: 1-56347-956-7 and ISBN-13: 978-1-56347-956-4 (2009).
35. Stephenson Gary V. The application of High-Frequency Gravitational Waves (HFGW) to communications,” paper HFGW-03-104, Gravitational-Wave Conference, The MITRE Corporation, May 6—9 (2003).
36. Stephenson Gary V. Lessons for Energy Resonance HFGW Detector Designs Learned from Mass Resonance and Interferometric LFGW Detection Schemes,” after Peer Review, accepted for Publication in the Proceedings of the Space, Propulsion and Energy (2009)
37. Stephenson Gary V. The Standard Quantum Limit for the Li-Baker HFGW Detector,” after Peer Review, accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. (Paper 023), American Institute of Physics Conference Proceedings, Melville, NY 1103, 542—547. Edited by Glen Robertson. (Paper 016), American Institute of Physics Conference Proceedings, Melville, NY 1103, pp. 532—541 (2009).
http://www.gravwave.com/docs/Detector%20Development.pdf
http://www.gravwave.com/docs/Detector%20Development.pdf
38. Garcia-Cuadrado G. Towards a New Era in Gravitational Wave Detection: High Frequency Gravitational Wave Research,” after peer review, accepted for publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. (Paper 038), American Institute of Physics Conference Proceedings, Melville, NY 1103, 553—563 (2009). Please visit Internet site: http://www.gravwave.com/docs/Toward%20a%20New%20Era%20in%20Gravitational...
39. Corda Ch., Fontana G., Garcia-Cuadrado G. Gravitational Waves in the Hyperspace: a Critical Review," After Peer Review, Accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF2009), 24—27 February, Edited by Glen Robertson. (Paper 027), American Institute of Physics Conference Proceedings, Melville, NY 1103 (2009).
40. Woods R. C. Comments on ‘A gravitational shielding based upon ZnS:Ag phosphor’ and ‘The gravitational mass at the
superconducting state,” Los Alamos National Laboratory
Archive physics/0204031 (2002).
Archive physics/0204031 (2002).
41. Woods R. C. Manipulation of gravitational waves for communications applications using superconductors. Phys. C, 433, 101—107 (2005).
https://doi.org/10.1016/j.physc.2005.10.003
https://doi.org/10.1016/j.physc.2005.10.003
42. Woods C., Baker R. M. L., Jr. Gravitational Wave Generation and Detection Using Acoustic Resonators and Coupled Resonance Chambers,” in the proceedings of Space Technology and Applications International Forum (STAIF-2005), edited by M.S. El-Genk, American Institute of Physics Conference Proceedings, Melville, NY 746, 1298 (2005).
43. Woods R. C. Modified Design of Novel Variable-Focus Lens for VHFGW,” Discussion-Focus Paper 3.1, 2nd HFGW International Workshop, Institute for Advanced Studies at Austin (IASA),Texas, September 19—21(2007);
44. Woods R. C., Baker, R. M. L., Jr., Li F., Stephenson G. V., Davis E. W., Beckwith A. W. A new theoretical technique for the measurement of high-frequency relic gravitational waves. J. Mod. Phys., 2 (N 6), 498—518 (2011). The Abstract is available at: http://vixra.org/abs/1010.0062 and the manuscript is available at:
45. Woods R. C., Baker R. M. L. Jr. Generalized Generators of Very-High-Frequency Gravitational Waves Including Ring/Cylinder Devices,” After Peer Review, Accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. (Paper 001), American Institute of Physics Conference Proceedings, Melville, NY 1103, 515—523 (2009).
46. Baker R. M. L., Jr., Black C. S. Radiation Pattern for a Multiple-Element HFGW Generator, After Peer Review, Accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. 3rd High-Frequency Gravitational Wave Workshop (Paper 035), American Institute of Physics Conference Proceedings, Melville, NY 1103, 582—590 (2009).
47. Giovannini M. Phys. Rev. D, 60, 123, 511 (1999).
48. Giovannini M. Class. Quantum Grav., 16, 2905 (1999).
https://doi.org/10.1088/0264-9381/16/9/308
https://doi.org/10.1088/0264-9381/16/9/308
49. Riazuelo A., Uzan J. P. Phys. Rev. D, 62, 083, 506 (2000).
50. Lidsey J. E. et al. Phys. Rep., 337, 343 (2000).
https://doi.org/10.1016/S0370-1573(00)00064-8
https://doi.org/10.1016/S0370-1573(00)00064-8
51. Copeland E. J. et al. gr-qc/9803070.
52. Gasperini M., Veneziano G. Phys. Rep., 373, 1 (2003).
https://doi.org/10.1016/S0370-1573(02)00389-7
https://doi.org/10.1016/S0370-1573(02)00389-7
53. Veneziano G. Sci. Am., 290, 30 (2004).
https://doi.org/10.1038/scientificamerican0504-54
https://doi.org/10.1038/scientificamerican0504-54
54. Grishchuk L. P. gr-gc/0002035.
55. Grishchuk L. P. gr-gc/0305051.
56. Grishchuk L. P. gr-gc/0504018.
57. Gorkavyi N. N. Paper HFGW-03-115, In: High-Frequency Gravitational Waves Conference, ed. by P. Murad, R. M. L. Baker Jr. (MITRE Corporation, Mclean, VA, USA (2003).
58. Bisnovatyi-Kogan G. S., Rudenko V. N. Very high frequency gravitational wave background in the universe. Class. Quantum Grav., 21, 3344—3359 (2004).
https://doi.org/10.1088/0264-9381/21/14/001
https://doi.org/10.1088/0264-9381/21/14/001
59. Zhang Y., Yuan Y., Zhao W., Chen Y. T. Class. Quantum Grav., 1383 (2005).
60. Randall L., Sundrum R. Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett., 83, 17, 3370—3373 (1999).
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
61. Randall L., Sundrum R. An Alternative to Compactification. Phys. Rev. Lett., 83, 4690—4693 (1999).
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
62. Sokol J. Observations hint at a new recipe for giant black holes. Science, 355, 120 (2017).
https://doi.org/10.1126/science.355.6321.120
https://doi.org/10.1126/science.355.6321.120
63. Margalit Y. et al. Science, 349, 1205—1208 (2017). 64. Li Fang-Yu., Tang Meng-Xi. Positive Definite Problem of Energy Density and Radiative Energy Flux for Pulse Cylindrical Gravitational wave. Acta Phys. Sinca, 6 (N 5), 321—333 (1997).
65. Li Fang-Yu., Tang Meng-Xi, Luo Jun, Li Yi-Chuan. Electrodynamical response of a high energy photon flux to a
gravitational wave. Phys. Revw D, 62, 044018-1 to 044018 -9 (2000).
66. Li Fang-Yu., Tang Meng-Xi, Shi Dong-Ping. Electromagnetic response for High-Frequency Gravitational Waves in the GHz to THz band, paper HFGW-03-108, Gravitational Wave Conference, The MITRE Corporation, May 6—9 (2003).
67. Li Fang-Yu., Yang Nan. Resonant interaction between a weak gravitational wave and a microwave beam in the double polarized states through a static magnetic field. China Phys. Lett., 21 (N 11), 2113 (2004).
https://doi.org/10.1088/0256-307X/21/11/011
https://doi.org/10.1088/0256-307X/21/11/011
68. Philip Ball. A World Without Cause and Effect. Nature, 546, 590—592 (2017).
https://doi.org/10.1038/546590a
https://doi.org/10.1038/546590a
69. Beckwith Andrew W. J. High Energy Phys., Gravitation and Cosmology, 3 (N 4), (2017).
70. Beckwith Andrew W. HFGW and the search for relic gravitons / entropy increase from the early universe, Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF 2010), February 23—26, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, U.S.A., Edited by Glen Robertson, American Institute of Physics Conference Proceedings, Melville. NY, USA, 1208 (2010).
71. Beckwith Andrew W. Relic High Frequency Gravitational Waves, Neutrino Physics, and Icecube,” After Peer Review, Accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. (Paper 003), American Institute of Physics Conference Proceedings, Melville, NY 1103, P. 564—570 (2009).
72. Beckwith A.W. Several routes for determining entropy generation in the early universe, links to CMBR spectra, and relic neutrino production,” Presented at 6th International Conference on Gravitation and Cosmology (ICGC-2007), aneshkhind, Pune, India, 17—21 Dec 2007 and 43rd Rencontres de Moriond: Cosmology, La Thuile, Italy, 15-22 Mar 2008 and 23rd International Conference on Neutrino Physics and Astrophysics (Neutrino 2008), Christchurch, New Zealand, 26—31 May 2008. e-Print: arXiv:0712.0029 (2007).
73. Beckwith Andrew W. Implications for the Cosmological Landscape: Can Thermal Inputs from a Prior Universe Account for Relic Graviton Production? In the proceedings of Space Technology and Applications International Forum (STAIF-2008), edited by M.S. El-Genk, American Institute of Physics Conference Proceedings, Melville, NY 969, P.1091 (2008).
74. Corda Christian. Primordial Gravity’s Breath. Electronic J. Theor. Phys., 9, 26, 1—10 (2012). http://arxiv.org/abs/1110.1772
75. Corda Christian. Information on the inflation field from the spectrum of relic gravitational waves. General Relativity and Gravitation, 42, 5, 1323—1333 (2010).
https://doi.org/10.1007/s10714-009-0895-6
https://doi.org/10.1007/s10714-009-0895-6
76. Corda Christian. Tuning the Stochastic Background of Gravitational Waves Using the WMAP Data. Mod. Phys.Lett. A, 22 (N 16), 1167—1173 (2007).
https://doi.org/10.1142/S0217732307023523
https://doi.org/10.1142/S0217732307023523
77. Corda Christian. Fontana Giorgio and Garcia Cuadrado Gloria Gravitational Waves in Hyperspace. Mod. Phys. Ltrs. B, 24 (N 8), 575—582 (2009).
78. Corda Christian. Tuning the Stochastic Background of Gravitational Waves Using the WMAP Data, Mod .Phys.Lett. A, 22 (N 16), 1167—1173 (2007).
https://doi.org/10.1142/S0217732307023523
https://doi.org/10.1142/S0217732307023523
79. Abbott B. P. et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Revw Lett., 116, 061102-1 to -16. February 11 (2016).
80. Singh S. et al. Detecting continuous gravitational waves with superfluid He-4. New J. Phys., 19, 073023 (2017).
https://doi.org/10.1088/1367-2630/aa78cb
https://doi.org/10.1088/1367-2630/aa78cb
81. Adrian Woolfson. Inevitable or improbable? Nature, 357 (N 6349), 362 (2017).
https://doi.org/10.1126/science.aan8380
https://doi.org/10.1126/science.aan8380
82. Yatskiv Ya. S., Alexandrov A. N., Vavilova I. B., Zhdanov V. I., Kudrya Yu. N., Parnovsky S. L., Fedorova O. V., Khmil S. V. General Relativity theory: tests through time, 288 p. (Akademperiodyka, Kyiv, 2005).
http://adsabs.harvard.edu/abs/2005grtt.book.....Y
http://adsabs.harvard.edu/abs/2005grtt.book.....Y
83. Hawking W., Israel W. General Relativity – An Einstein centenary survey. (Cambridge University Press, 1979).
84. Baker R. M. L., Jr. Gravitational Waves: the World of Tomorrow, a Primer, with Exercises, 3rd Printing , Infinity Press, 2016.
86. Beckwith Andrew Walcott. History lessons from the 5th Solvay meeting, 1927,” Chongqing University Department of Physics Report for the 27th Solvay Conference in Physics, International Solvay Institutes (2017)
87. Yatskiv, Ya.S., Vavilova, I.B., Romanets, O.A., Savchuk, V.S. Some little-known facts and events from the history of gravitational wave research in Ukraine. Kosm. nauka tehnol. 2017, 23(3):65-74.
https://doi.org/10.15407/knit2017.03.064
https://doi.org/10.15407/knit2017.03.064