Influence of cutouts on strength of cylindrical compartments of launch vehicles at inelastic deformation of material

1Hudramovich, VS, 2Klymenko, DV, 3Hart, EL
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
3Dnipro National Univercity named after Oles Honchar, Dnipro, Ukraine
Space Sci.&Technol. 2017, 23 ;(6):12-20
https://doi.org/10.15407/knit2017.06.012
Publication Language: Russian
Abstract: 
Possibility of active use projective-iterative schemes of variation-mesh finite element method for calculation of the launch vehicles compartments is discussed. It is important in the design and development of newly produced launch vehicles, when the big volume of different calculations is necessary. The problems of strength for the cylindrical compartments with cutouts at inelastic deformation of material are developed.
Keywords: cutouts, cylindrical compartments of launch vehicles, elasto-plastic deformation
References: 
 1. Astafiev V. I , Radaev Yu. N., Stepanova A. V. Nonlinear fracture mechanics, 562 p. (Samar. Univ., Samara, 2004) [in Russian].
2. Hart E. L., Hudramovich V. S. Projective-iterative modification of the method of local variations for problems with a quadratic functional. Prikladnaya matematika i mekhanika, 80 (2), 218—229 (2016) [in Russian].
3. Hudramovich V. S. Modeling of the stress-strain state for shell structures of rocket technique and energetics. Tekhnicheskaya mekhanika, N 4, 97—104 (2013) [in Russian].
4. Hudramovich V. S. Influence of openings on limit states of the plate-shell structural members. Visnyk Dnipropetrovskoho Univ. Ser. Mekhanika, 22 (18), 47—60 (2014) [in Russian].
5. Hudramovich V. S., Hart E. L., Klymenko D. V., et al. Finite-element analysis of the elastoplastic stress-strain state of compartments of the rocket structures. Tekhnicheskaya mekhanika, N 4, 52—61 (2011) [in Russian].
6. Hudramovich V. S., Dzyuba A. P., Selivanov Yu. M. Holographic interferometry methods of inhomogeneous thinwalled structures, 258 p. (Lira, Dnepropetrovsk, 2017) [in Russian].
7. Hudramovich V. S., Reprintsev A. V., Ryabokon’ S. A., Samarskaya E. V. Estimation of resonance for rocket- space structures taking into account influence of stress concentrators in view of openings. Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol', N 2, 28—36 (2016) [in Russian].
https://doi.org/10.15407/tdnk2016.02.03
 8. Guz A. N., Chernyshenko I. S., Chekhov V. N., et al. The methods for calculation of shells. In 5 vol. 1. Theory of shells weakened with openings, 636 p. (Nauk. dumka, Kiev, 1980) [in Russian].
9. Degtyarev A. V., Pilipenko O. V., Hudramovich V. S., et al. About classification of launch equipment for the space launch systems for the stress regulations justification. Space Sci.&Technol., 22 (1), 3—14 (2016) [in Russian].
https://doi.org/10.15407/knit2016.01.003
10. Ilyushin A. A. Works. In 4 Vol. V. 2. Plasticity: 1946 — 1966, 479 p. (Fizmatlit, Moscow, 2004) [in Russian].
11. Marchuk G. I., Agoshkov V. I. Introduction to projection-grid methods, 416 p. (Nauka, Moscow, 1981) [in Russian].
12. Samarskii A. A., Nikolaev Ye. S. Methods for solving of grid equations, 592 p. (Nauka, Moscow, 1978) [in Russian].
13. Shaidurov V. V. Semiarid finite-elements methods, 288 p. (Nauka, Moscow, 1989) [in Russian].
14. Sixty years in rocketry and astronautics (Shest'desyat let v raketostroyenii i kosmonavtike). Ed. A. V. Degtyarev, 540 p. (ART-PRESS, Dnipropetrovsk, 2014) [in Russian].
15. Hart E. L. Projection-iterative version of the point wise velaxation method. J. Math. Sci., 167 (1), 76—88 (2010).
https://doi.org/10.1007/s10958-010-9903-3
16. Hart E. L., Hudramovich V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Proceedings 2 Int. Conference Maintenance-2012, 157—164 (Univ. of Zenica, Zenica, 2012).
17. Hart E. L., Hudramovich V. S. Projection-iterative schemes for realization of the finite element method in problems of deformation of plates with holes and inclusions. J. Math. Sci., 203 (1), 55—69 (2014).
https://doi.org/10.1007/s10958-014-2090-x
18. Hudramovich V. S. Contact interactions and limit states of the shell-type structures under local loading. Proceedings of the 2th China-Ukraine Forum on Science and Technology (5—8 July 2016, Harbin, China), 2–3 (Harbin, 2016).
19. Hudramovich V. S., Hart E. L., Klymenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength Mater., 45 (1), 1—9 (2013).
https://doi.org/10.1007/s11223-013-9426-5
20. Hudramovich V. S., Hart E. L., Ryabokon’ S. A. Elastoplastic deformation of nonhomogeneous plates. J. Eng. Math., 78 (1), 181—197 (2013).
https://doi.org/10.1007/s10665-010-9409-5
21. Hudramovich V. S., Hart E. L., Strunin K. A. Modeling of behavior of plane deformable elastic media with stretched ellipsoidal and rectangular inclusions. Mater. Sci., 52 (6), 768—774 (2016).
https://doi.org/10.1007/s11003-017-0020-z