Space mission “CLUSTERION”: investigation of the dynamical processes in the ionesphere using a cluster of “YUZHSAT” satellites
Heading:
1Bankov, LG, 2Belyayev, SM, 3Ivanova, VI, 4Lizunov, GV, 3Melanchenko, OG, 5Oyama, K-I 1Space Research Institute of the Bulgarian Academy of Sciences, Sofia, Bulgaria 2L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine 3Yangel Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine 4Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine 5National Cheng Kung University, Taiwan |
Space Sci.&Technol. 2017, 23 ;(6):25-33 |
https://doi.org/10.15407/knit2017.06.025 |
Publication Language: Russian |
Abstract: The “ClusterIon” is a fundamental scientific project devoted to the study of near-Earth space. The project is a response to the challenges posed by the modern development of knowledge about the Space Weather and the ionospheric responses to distributed over the globe natural and artificial sources of energy. Along with this, the project “ClusterIon” is a logical continuation of previous ionospheric missions realized throughout the space age, such as Dynamics Explorer 2 (1982–1984), Freja (1992–1993), DEMETER (2004–2010) as well as the upcoming “Ionosat-Micro” experiment onboard the Microsat-M satellite. The main innovation of the project is the launching into the ionosphere of a cluster of several (presumably 3) spacecraft equipped with identical sets of scientific instruments in order to provide simultaneous measurement of gas-plasma and electrodynamics parameters of the ionosphere. “ClusterIon” payload composition: Ion drift-meter ID, Electron temperature and concentration probe ETP; Magneto-Wave Complex MWC, including vector flux-gate magnetometer FGM, vector search-coil magnetometer IM and 2 electric potential probes EP.
|
References:
1. Zasukha S. A., Fedorov O. P. (Eds.) Space project «IonosatMicro»: monograph (Academperiodica, Kyiv, 2013).
2. Skorokhod T. V., Lizunov G. V. Localized packets of acoustic-gravity waves in the ionosphere. Geomagnetism and Aeronomy, 52 (1), 88—93 (2012).
https://doi.org/10.1134/S0016793212010148
3. Chernogor L. F. Physics and ecology of catastrophes: Monograph, 555 p. (KhNU named after V. N. Karazin, Kharkov, 2012) [In Russian].
4. Yampolski Yu. M., Zalizovski A. V., Litvinenko L. N., et al. Magnetic field variations in Antarctica and the conjugate region (New England) stimulated by cyclone activity. Radiphysics and Radioastronomy, 9 (2) 130—151 (2004) [In Russian].
5. Oyama K., Cheng C. Z. (Eds. ) An Introduction to Space Instrumentation, 1—15 (2012).
6. Dudkin F., Korepanov V., Dudkin D., et al. Electric field of the power terrestrial sources observed by microsatellite Chibis-M in the Earth’s ionosphere in frequency range 1—60 Hz. Geophys. Res. Lett., 42, (2015),
2. Skorokhod T. V., Lizunov G. V. Localized packets of acoustic-gravity waves in the ionosphere. Geomagnetism and Aeronomy, 52 (1), 88—93 (2012).
https://doi.org/10.1134/S0016793212010148
3. Chernogor L. F. Physics and ecology of catastrophes: Monograph, 555 p. (KhNU named after V. N. Karazin, Kharkov, 2012) [In Russian].
4. Yampolski Yu. M., Zalizovski A. V., Litvinenko L. N., et al. Magnetic field variations in Antarctica and the conjugate region (New England) stimulated by cyclone activity. Radiphysics and Radioastronomy, 9 (2) 130—151 (2004) [In Russian].
5. Oyama K., Cheng C. Z. (Eds. ) An Introduction to Space Instrumentation, 1—15 (2012).
6. Dudkin F., Korepanov V., Dudkin D., et al. Electric field of the power terrestrial sources observed by microsatellite Chibis-M in the Earth’s ionosphere in frequency range 1—60 Hz. Geophys. Res. Lett., 42, (2015),
https://doi.org/10.1002/2015GL064595
7. Gross S. H., Reber C. A., Huang F. T. Large-scale waves in the thermosphere observed by the AE-C satellite. The Transactions on Geoscience and Remote sensing, GE-22 (4), 340—351 (1984).
8. Hanson W. B., Heelis R. A. Techniques for measuring bulk gas motion from satellites. Space Sci. Instrum., 1, 493 (1975).
9. Hines C. O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38, 1441—1481 (1960).
https://doi.org/10.1139/p60-150
10. Ivchenko N., Pronenko V., Tidert G., Gerhard D., and SEAM Team. CubeSat for scientific mission development. The 4S Symposium, (2014).
11. Korepanov V., Lizunov G., Fedorov O., et al. IONOSAT — ionospheric satellite cluster. Adv. Space Res., 42, 1515— 1522 (2008).
https://doi.org/10.1016/j.asr.2008.02.022
12. Melanchenko A., Nesevrya I. Methods of spacecraft formation flying translation motion control. 5th International conference «Space Technologies: Present and Future», Presentation Theses., 110 (2015).
13. Parrot M. World map of ELF/VLF emissions as observed by low-orbiting satellite. Annales Geophysicae, 8, 135— 145 (1990).
14. Rolland L. M., Lognonn′e P., Astafyeva E., et al. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63 (7), 853—857 (2011).
https://doi.org/10.5047/eps.2011.06.020
15. Schrijver C. J., Kauristie K., Aylward A. D., et al. Understanding space weather to shield society: A global road map for 2015—2025 commissioned by COSPAR and ILSW. Adv. Space Res. (2015) http:// dx.doi.org/10.1016/ j.asr.2015.03.023
16. Hayakawa M. (Ed.) The Frontier of Earthquake Prediction Studies, 794 p., Nihon-senmontosho-Shuppan, Tokyo, 2012.
7. Gross S. H., Reber C. A., Huang F. T. Large-scale waves in the thermosphere observed by the AE-C satellite. The Transactions on Geoscience and Remote sensing, GE-22 (4), 340—351 (1984).
8. Hanson W. B., Heelis R. A. Techniques for measuring bulk gas motion from satellites. Space Sci. Instrum., 1, 493 (1975).
9. Hines C. O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38, 1441—1481 (1960).
https://doi.org/10.1139/p60-150
10. Ivchenko N., Pronenko V., Tidert G., Gerhard D., and SEAM Team. CubeSat for scientific mission development. The 4S Symposium, (2014).
11. Korepanov V., Lizunov G., Fedorov O., et al. IONOSAT — ionospheric satellite cluster. Adv. Space Res., 42, 1515— 1522 (2008).
https://doi.org/10.1016/j.asr.2008.02.022
12. Melanchenko A., Nesevrya I. Methods of spacecraft formation flying translation motion control. 5th International conference «Space Technologies: Present and Future», Presentation Theses., 110 (2015).
13. Parrot M. World map of ELF/VLF emissions as observed by low-orbiting satellite. Annales Geophysicae, 8, 135— 145 (1990).
14. Rolland L. M., Lognonn′e P., Astafyeva E., et al. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63 (7), 853—857 (2011).
https://doi.org/10.5047/eps.2011.06.020
15. Schrijver C. J., Kauristie K., Aylward A. D., et al. Understanding space weather to shield society: A global road map for 2015—2025 commissioned by COSPAR and ILSW. Adv. Space Res. (2015) http:// dx.doi.org/10.1016/ j.asr.2015.03.023
16. Hayakawa M. (Ed.) The Frontier of Earthquake Prediction Studies, 794 p., Nihon-senmontosho-Shuppan, Tokyo, 2012.