Dependence of spatial periods of travelling ionospheric disturbances on their relative amplitudes

1Fedorenko, Yu.P
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Space Sci. & Technol. 2020, 26 ;(6):038-059
https://doi.org/10.15407/knit2020.06.038
Publication Language: Ukrainian
Abstract: 
The relationship between the horizontal spatial period L and the relative amplitude Ad of traveling ionospheric disturbances (TID) at various levels of solar (SA) and geomagnetic (GA) activity is experimentally studied. In the vast majority of cases, the TIDs observed during our study were generated by high-latitude sources. It was found that the period L and amplitude Ad of the medium-scale (MS) TIDs (L = 100 – 800 km) are related by a linear dependence, which does not depend upon the SA level. For large-scale (LS) TID with L = 1000 – 4000 km, the linear approximation of the function L(Ad) at low and high SA levels are increasing or decreasing functions, respectively. For global-scale (GM) TIDs with L = 5000 – 35000 km at low SA levels, the linear approximation L(Ad) is an increasing function. The function L(Ad) for TIDs of all spatial scales does not depend upon the GA level.
        The data were collected at the radio-physical observatory of V. N. Karazin Kharkiv National University (j = 49.63°N, l = 36.32°E) in 1999—2010 with the ionosphere radio sounding by using coherent radio waves at frequencies of about 150 and 400 MHz radiated by low-orbit navigation satellites Parus and Cicada orbiting at circular near-polar orbit with a height of about 1000 km.  The experimental dependence of the horizontal period L of TID upon their relative amplitude Ad is explained based on the global prognostic semi-empirical model of the generation and propagation of acoustic-gravitational waves and traveling ionospheric disturbances.
Keywords: horizontal spatial period, linear regression, magnetic activity level, relative amplitude, solar activity level, traveling ionospheric disturbance
References: 
1. Kalitkin N. N. (1978). Numerical methods: Textbook. Moscow: Nauka, 512 p. [in Russian].
2. Tyrnov O. F., Fedorenko Y. P., Dorohov V. L. (2016). Spatio-temporal dynamics of traveling ionospheric disturbances. Kosm. nauka tekhnol., 22 (5), 3—70 [in Russian].
https://doi.org/10.15407/knit2016.05.003
3. Tyrnov O. F., Fedorenko Yu. P., Chernogor L. F. (2005). Studying wave-like disturbances of electron density using radio sounding of the ionosphere by coherent signals of navigation satellites. Usp. Sovrem. Radioelektron., 1, 36—80 [in Russian].
4. Fedorenko V. N., Fedorenko Yu. P., Shagimuratov I. I. (1997). Results of the ionosphere study by means of diversity reception of radiosignals of low-orbiting navigation satellites. Geomagn. Aeron., 37 (3), 346—349. [in Russian].
5. Fedorenko Yu. P., Tyrnov O. F., Fedorenko V. N. (2008). Parameters of empirical model of traveling ionospheric disturbances. Elektromagnitnye volny i elektronnye sistemy, 13 (1), 21—46 [in Russian].
6. Fedorenko Yu. P., Fedorenko V. N., Dorohov V. L. (2010). Front inclination in a vertical plane of medium-scale traveling ionospheric disturbances and an effective thickness of a layer of their detection. Visn. Kharkiv Karazin Nat. Univ., Ser.
Radiofiz. Elektron., 17 (942), 109—120 [in Russian].
7. Fedorenko Yu. P., Fedorenko V. N., Dorohov V. L. (2012). Diagnostics of parameters of large-scale traveling ionospheric disturbances with the help radioscopy ionosphere by signals low-orbital navigating satellites, Visn. Kharkiv Karazin Nat.
Univ., Ser. Radiofiz. Elektron., 20 (1010), 97—112 [in Russian].
8. Fedorenko Yu. P., Fedorenko V. N., Lysenko V. N. (2011). Parameters of the medium-scale traveling ionospheric disturbances model deduced from measurements. Geomagn. Aeron., 51 (1), 90—106 [in Russian].
9. Chiu Y. T. (1975). An improved phenomenological model of ionosphere density. J. Atmos. and Terr. Phys., 37, 1563—1570.
10. Evans J. V., Holt J. M., Wand R. H. (1983). A differential-Doppler study of traveling ionospheric disturbances from Millstone Hill. Radio Sci., 18 (3), 435—451.
11. Fedorenko Y. P., Tyrnov O. F., Fedorenko V. N., Dorohov V. L. (2013). Model of traveling ionospheric disturbances. J. Space Weather Space Clim., 3 (A30), 1—28.
https://doi.org/10.1051/swsc/2013052.
12. Francis S. H. (1974). A theory of medium-scale traveling ionospheric disturbances. J. Geophys. Res., 79 (34), 5245—5260.
13. Ogava T., Igarashi K., Aikyo K., Maeno H. (1988). Satellite observation of medium-scale traveling ionospheric disturbances over Syowa station. Proc. NIPR Symp. Upper Atmos. Phys., 1, 192—198.
14. Pushin V. F., Fedorenko V. N., Fedorenko Yu. P. Tyrnov O. F., Shagimuratov I. I. (1999). Space correction of global models of electron number density in the ionosphere by receiving at one site signals from low-orbit satellites. Phys. Chem. Earth (C),
24 (4), 375—378.
15. Row R. V. (1967). Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res., 72 (5), 1599—1610.
16. Tucker A. J., Fannin B. M. (1968). Analysis of ionospheric contribution to the Doppler-shift of CW signal from artificial Earth satellites. J. Geophys. Res., 73 (13), 4325—4334.
17. Willman J. F. (1965). Frequency-dependent ionospheric refraction effects on the Doppler shift of satellite signals. EEEE transactions on aerospace and electronic systems, AES-1 (3), 283—289.
18. Willman J. F., Tucker A. J. (1968). Accuracy of satellite Doppler data for ionospheric study, navigation, and geodesy. J. Geophys. Res., 73 (1), 385—392.