Angular properties of the solar light scattering in the terrestrial atmosphere observed by the ScanPol instrument of the AEROSOL-UA project

1Danylevsky, VO
1Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; (2) Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
Space Sci. & Technol. 2020, 26 ;(6):060-074
https://doi.org/10.15407/knit2020.06.060
Publication Language: Ukrainian
Abstract: 
Angular characteristics of solar light scattering in the Earth’s atmosphere and parameters of the atmosphere volume and the surface part observed by the ScanPol instrument of the “Aerosol-UA” project are estimated in order to determine properties  of aerosol particles from a satellite orbit. Estimations were obtained for the scattering angles ranges in the lower troposphere which can be observed by the ScanPol instrument from the polar sun-synchronous orbit with altitude 705 km and inclination 98.1° crossing the ascending knot on the equator at 21h 30m, 22h 30m, and 23h 30m of local mean solar time.
              The estimations of the scattering angles were obtained at each of the orbit realizations for sites on the Earth’s surface, were the zenith angle of the Sun is 80°, 50°, and minimal one for each of the orbit realizations. The calculations were performed for the dates of 2020 close to the summer solstice, the autumnal equinox, and the winter solstice (namely 21 June, 21 September, and 21 December, respectively). The scattering angles range was computed for the range of the ScanPol scanning angles equal to 110° along the sub-satellite trace. The range of scattering angles is maximal at the considered here maximal zenith angle of the Sun equal to 80°, which occurs in the polar latitudes of the northern hemisphere during the period between the spring and the autumnal equinoxes and in the middle latitudes during the rest of a year. The maximal range of scattering angles is approximately 51.1°...149.5° close to the summer solstice for the satellite orbit with local time of crossing the ascending knot (TBB) equal to 21h 30m and 41.9°...172.9° for the orbit with ТВВ = 23h 30m. The minimal range of scattering angles occurs at minimal zenith angles of the Sun close to the winter solstice and takes on the values approximately 103.2°...142.8° and 108.2°...170.4° at mentioned ТВВ, respectively.  For the rest of the zenith angles of the Sun, the range of scattering angles takes on the intermediate values. The range of scattering angles decreased mainly at the cost of small scattering angles. In summary, the range of observed scattering angles is maximal for the orbit with local time close to the noon, to be precise at TBB between 22h 30m and 24h 00m for the orbit with inclination assumed here.
             Comparison of the ranges of scattering angles observed by the ScanPol instrument and data of simulations showed that measurements by ScanPol from the considered orbit allow us to retrieve microphysical and optical properties of aerosol particles. Linear size of the scene observed by instrument along the sub-satellite trace increases during the scanning process from approximately 6 km at nadir to almost 60 km at maximal scattering angle equal to 60°, and simultaneously the longitude of the observed scene decreases by 1.55° that corresponds to linear shift along the parallel from DS »172 km on the equator to DS » 24.5 km on the latitude 82°. That is why data measured by the ScanPol can be used after mesoscale averaging.
Keywords: aerosols, Earth’s atmosphere, optics of the atmosphere, remote sensing, scattering of the solar light
References: 
1. Abalakin V. K. (1979). Basics of the ephemerides astronomy. Мoscow: Nauka [in Russian].
2. Ambartsumian V. A., Mustel E. P., Severny A. B., Sobolev V. V. (1952). Theoretical astrophysics. Moscow [in Russian].
3. Duma D. P. (2007). General astrometry. Kyiv: Naukova Dumka [in Ukrainian].
4. Syniavskyi I. I., Milinevsky G. P., Ivanov Yu. S., Sosonkin M. G., Danylevsky V. O., Rosenbush V. K., Bovchaliuk A. P., Lukenyuk A. A., Shymkiv A. P., Mishchenko M. I. (2015). Metodology, hardware implementation, and validation of satellite
remote sensing of atmospheric aerosols: first results of the Aerosol-UA space experiment development. Space Science and Technology, 23, № 3, 9—17 [in Ukrainian].
https://doi.org/10.15407/knit2015.03.009
5. Yatskiv Ya. S., Mishchenko M. I., Rosenbush V. K., Shakhovskoy D. N., Sinyavsky I. I., Milinevsky G. P., Kiselev N. N., Ivanov Yu. S., Petukhov V. N., Danylevsky V. O., Bovchalyuk A. P. (2012). Satellite project “AEROSOL-UA”: remote sensing
of aerosols in the Earth’s atmosphere. Space Science and Technology, 18, № 4, 3—15 [in Russian].
https://doi.org/10.15407/knit2012.04.003
6. Anderson T. L., Charlson R. J., Winker D. M., Ogren J. A. Holmén K. (2003). Mesoscale Variations of Tropospheric Aerosols. J. Atmos. Sci., 60, 119—136.
7. Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.-M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheesh S. K., Sherwood S., Stevens B., Zhang X. Y. (2013). Clouds and Aerosols. Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. T. F. Stocker et al. Cambridge, New York: Cambridge Univ. Press.
8. Capderou M. (2005). Satellites Orbits and Missions. Springer-Verlag France.
9. Dubovik O., Holben B., Eck T. F., Smirnov A., Kaufman Y. J., King M. D., Tanré D., Slutsker I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590—608.
10. Dubovik O., Li Z., Mishchenko M. I., Tanré D., Karol Y., Bojkov B., Cairns B., Diner D. J., Espinosa W. R., Goloub P., Gu X., Hasekamp O., Hong J., Hou W., Knobelspiesse K. D., Landgraf J., Li L., Litvinov P., Liu Y., Lopatin A., Marbach T., Maring H., Martins V., Meijer Y., Milinevsky G., Mukai S., Parol F., Qiao Y., Remer L., Rietjens J., Sano I., Stammes P., Stamnes S., Sun X., Tabary P., Travis L. D., Waquet F., Xu F., Yan C., Yin D. (2019). Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. J. Quant. Spectrosc. and Radiat. Transfer., 224, 474—511.
11. Dubovik O., Sinyuk A., Lapyonok T., Holben B. N., Mishchenko M., Yang P., Eck T. F., Volten H., Muñoz O., Veihelmann B., van der Zande W. J., Leon J.-F., Sorokin M., Slutsker I. (2006). Application of spheroid models to account for aerosol
particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208.
12. Dubuisson P., Roger J. C., Mallet M., Dubovik O. (2006). A code to compute the direct solar radiative forcing: Application to anthropogenic aerosols during the escompte experiment. International Radiation Symposium (IRS 2004) on Current Problems
in Atmospheric Radiation. (Eds. H. Fischer, B.-J. Sohn, A. Deepak). Hampton, 127—130.
13. Seidelmann P. K. (Ed.). (1992). Explanatory supplement to the astronomical almanac: University Science Books. California: Mill Valley,
14. Forster P., Ramasvamy V., Artaxo P., Bernsten T., Betts R., Fahey D. W., Haywood J., Lean J., Lowe D. C., Myhre G., Nganga J., Prinn R., Raga G., Shulz M., Dorland R. V. (2007). Changes in atmospheric constituents and in radiative forсing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. S. Solomon et al. Cambridge and New York: Cambridge Univ. Press.
15. Galytska E., Danylevsky V., Hommel R., Burrows J. P. (2018). Increased aerosol content in the atmosphere over Ukraine during summer 2010. Atmos. Meas. Tech., 11, 2101—2118.
16. Giles D. M., Sinyuk A., Sorokin M. G., Schafer J. S., Smirnov A., Slutsker I., Eck T. F., Holben B. N., Lewis J. R., Campbell J. R., Welton E. J., Korkin S. V., Lyapustin A. I. (2019). Advancements in the Aerosol Robotic Network (AERONET) Version 3 database — automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech., 12, 169—209.
17. Hansen J., Travis L. D. (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527—610.
18. Holben B., Eck T., Slutsker I., Tanré D., Buis J., Setzer A., Vermote E., Reagan J., Kaufman Y., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. (1998). AERONET — a federated instrument network and data archive for aerosol characterization.
Remote Sens. Environ., 66, 1—16.
19. Kacenelenbogen M., Vaughan M. A., Redemann J., Hoff R. M., Rogers R. R., Ferrare R. A., Russell P. B., Hostetler C. A., Hair J. W., Holben B. N. (2011). An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol
extinction product based on a detailed multi-sensor, multi-platform case study. Atmos. Chem. Phys., 11, 3981—4000.
20. Kaufman Y. J. (1993). Aerosol optical thickness and atmospheric path radiance. J. Geophys. Res., 98 (D2), 2677—2692.
21. Lacis A., Mishchenko M. (1995). Climate forcing, climate sensitivity, and climate response: A radiative modeling perspective on atmospheric aerosols. Aerosol Forcing of Climate. Eds. R. J. Charlson, J. Heintzenberg. Jon Wiley&Sons Ltd., 11—42.
22. Levy R. C., Mattoo S., Munchak L. A., Remer L. A., Sayer A. M., Patadia F., Hsu N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 2989—3034.
23. Ma X., F. Yu, Luo G. (2012). Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties. Atmos. Chem. Phys., 12, 5563—5581.
24. Milinevsky G., Yatskiv Ya., Degtyaryov O., Syniavskyi I., Mishchenko M., Rosenbush V., Ivanov Yu., Makarov A., Bovchaliuk A., Danylevsky V., Sosonkin M., Moskalov S., Bovchaliuk V., Lukenyuk A., Shymkiv A., Udodov E. (2016). New satellite
project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere. Acta Astronautica, 123, 292—300.
25. Mishchenko M. I., Cairns B., Kopp G., Schueler C. F., Fafaul B. A., Hansen J. E., Hooker R. J., Itchkawich T., Maring H. B., Travis L. D. (2007). Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission.
Bull. Amer. Meteorol. Soc., 88, 677—691.
26. Myhre G., Stordal F., Bergelen T. F., Sundet J. K., Isaksen I. S. A. (2004). Uncertainties in the radiative forcing due to sulfate aerosols. J. Atmospheric Sci., 61 (5), 485—498.
27. Penner J. E., Andreae M., Annegarn H., Barrie L., Feichter J., Hegg D., Jayaraman A., Leaitch R., Murphy D., Nganga J., Pitari G. (2001). Aerosols, their Direct and Indirect Effects. Climate Change 2001: The Scientific Basis. Contribution of Working Group Third Assessment Report of the Intergovernmental Panel on Climate Change. Eds. J. T. Houghton, et al. Cambridge and New York: Cambridge Univ. Press.
28. Standish E. M. (1998). JPL planetary and lunar ephemerides. DE405/LE405, JPL IOM 312.F-98-048.
29. Su X., Goloub P., Chiapello I., Chen H., Ducos F., Li Z. (2010). Aerosol variability over East Asia as seen by POLDER space-borne sensors. J. Geophys. Res., 115, D24215.
30. Young S. A., Vaughan M. A. (2009). The retrieval of profiles of particulate extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. and Oceanic Technol., 26, 1105—1119.