Exoplanet Detection Methods: An Overview of Techniques and Limitations
Heading:
| 1Ortiz, ECM, 2Valencia, S 1Aeronautical Engineering, Fundación Universitaria Los Libertadores, Colombia 2Cranfield University, United Kingdom |
| Space Sci. & Technol. 2025, 31 ;(3):28-41 |
| https://doi.org/10.15407/knit2025.03.028 |
| Publication Language: English |
Abstract: This article provides an overview of the main methods used in the search for exoplanets, including the transit method, radial velocity, astrometry, and direct imaging. Through the analysis of various sources, the applicability, strengths, and inherent limitations of each technique are assessed. The transit method, responsible for approximately 75% of exoplanet discoveries to date, is the most widely used due to its ability to achieve high precision without requiring large telescopes. Its efficiency and the detailed information it provides on the characteristics of planets make it a fundamental tool in this field. Although the article does not present original results, it does offer a detailed discussion of the theoretical and practical implications of the analyzed methods, providing a conceptual framework that contributes to a better understanding of their impact on contemporary astronomy. Furthermore, it underscores the need to strengthen the rigor of data documentation and review processes, identifying key areas for improving the accuracy and reliability of scientific research. Finally, future lines of work are proposed, focusing on the development of new tools and methodologies that will overcome the current challenges in exoplanet detection.
|
| Keywords: astrobiology, astronomy, Astrophyscis, Explanets, methods |
References:
1. Akeson R., Chen X., Ciardi D., Crane M., Good J., Harbut M., ... Leifer S. (2013). The NASA Exoplanet Archive: Dataand Tools for Exoplanet Research. Publ. Astron. Soc. Pacif., 125(930).
https://doi.org/10.1086/672273
2. Barkaoui K., Schwarz R. P., Narita N., Mistry P., Magliano C., Hirano T., ..., Pass E. K. (2024). Three short-period Earthsized planets around M dwarfs discovered by TESS: TOI-5720 b, TOI-6008 b, and TOI-6086 b. Astron. and Astrophys., 687,1-24.
https://doi.org/10.1051/0004-6361/202349127
3. Batalha N. M. (2014). Exploring exoplanet populations with NASA's Kepler Mission. Proc. Nat. Acad. Sci., 111(35),12647-12654.
https://doi.org/10.1073/pnas.1304196111
4. Bean J. L., Stevenson K. B., Batalha N. M., Berta-Thompson Z., Kreidberg L., Crouzet N., ..., Wakeford H. R. (2018). TheTransiting Exoplanet Community Early Release Science Program for JWST. Publ. Astron. Soc. Pacif., 130, 114402.
5. Beichman C. A., Krist J., Trauger J. T., Greene T., Oppenheimer B., Sivaramakrishnan A., ... Rieke M. (2010). ImagingYoung Giant Planets From Ground and Space. Publ. Astron. Soc. Pacif., 122(888), 162-200.
https://doi.org/10.1086/651057
6. Borucki W. J. (2016). Kepler Mission: development and overview. Repts Progr. Phys., 79(3).
https://doi.org/10.1088/0034-4885/79/3/036901
7. Borucki W. J., Koch D., Basri G., Batalha N., Brown T., Caldwell D., ... Christensen-Dalsgaard J. (2010). Kepler Planet-Detection Mission: Introduction and First Results. Science, 327(5968), 977-980.
8. Burt J., Hooton M., Barragán O., Mamajek E., Fisher C., Seifahrt A., Brady M. (2024). Revising the Mass and Radius of aHigh-Demand JWST Super Earth Target. Bull. AAS, 56 (2).
9. Charbonneau D., Brown T. M., Burrows A., Laughlin G. (2006). When Extrasolar Planets Transit Their Parent Stars.
URL:https://arxiv.org/pdf/astro-ph/0603376
10. Chatterjee M., Sen A., Roy S. (2024). ExoSpikeNet: A Light Curve Analysis Based Spiking Neural Network for Exoplanet Detection. IEEE 13th Int. Conf. Communication Systems and Network Technologies (CSNT), 802-807.
https://doi.org/10.1109/CSNT60213.2024.10545663
11. Dattilo A., Vanderburg A., Shallue C. J., Mayo A. W., Berlind P., Bieryla A., Howell S. B. (2019). Identifying Exoplanetswith Deep Learning. II. Two New Super-Earths Uncovered by a Neural Network in K2 Data. Astron. J., 157, 169.
https://doi.org/10.3847/1538-3881/ab0e12
12. Einstein A. (1936). Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field. Science, 84(2188),506-507.
https://doi.org/10.1126/science.84.2188.506
13. ESA. (2024). How to find an exoplanet.
URL: https://www.esa.int/Science_Exploration/Space_Science/Exoplanets/How_to_... (Last accessed: 24.11.2024).
14. Fischer D. A., Howard A. W., Laughlin G. P., Macintosh B., Mahadevan S., Sahlmann J., Yee J. C. (2014). ExoplanetDetection Techniques.
https://doi.org/10.2458/azu_uapress_9780816531240-ch031
URL: https://arxiv.org/pdf/1505.06869
15. Fridlund M., Georgieva I. Y., Bonfanti A., Alibert Y. (2024). Planets observed with CHEOPS-Two super-Earths orbiting thered dwarf star TOI-776. Astron. and Astrophys., 684.
16. Gaia Collaboration. (2016). The Gaia mission. Astron. and Astrophys., 595(A1).
17. Gaudi B. S. (2012). Microlensing Surveys for Exoplanets. Annu. Rev. Astron. and Astrophys., 50, 411-453.
https://doi.org/10.1146/annurev-astro-081811-125518
18. Greene T. P., Bell T. J., Ducrot E., Dyrek A., Lagage P.-O., Fortney J. J. (2023). Thermal emission from the Earth-sizedexoplanet TRAPPIST-1 b using JWST. Nature, 618, 39-42.
https://doi.org/10.1038/s41586-023-05951-7
19. Han C., Lee C-U., Udalski A., Gould A., Bond I. A., et al. (2020). OGLE-2018-BLG-1700L: Microlensing Planet inBinary Stellar System. Astron. J., 159(2), 48.
https://doi.org/10.3847/1538-3881/ab5db9
20. Hatzes A. P. (2020). The Doppler Method for the Detection of Exoplanets. IOP Publishing
https://doi.org/10.1088/2514-3433/ab46a3
21. Hotnisky A., Kanodia S., Libby-Roberts J., Mahadevan S., Canas C. I., Gupta A. F., ..., Cochran W. D. (2024). Searching for GEMS: Two Super-Jupiters around M-dwarfs - Signatures of Instability or Accretion?
https://doi.org/10.3847/1538-3881/add2ef
URL: https://arxiv.org/abs/2411.08159(Last accessed: 24.11.2024).
22. Kasting J. F., Kopparapu R., Ramirez R. M., Harman C. E. (2014). Remote life-detection criteria, habitable zoneboundaries, and the frequency of Earth-like planets around M and late K stars. Proc. Nat. Acad. Sci., 111(35), 12641-12646.
https://doi.org/10.1073/pnas.1309107110
23. Kavanagh R. D., Vedantham H. K., Rose K., Bloot S. (2024). Unravelling sub-stellar magnetospheres. Astron. and Astrophys. 692, 15.
https://doi.org/10.1051/0004-6361/202452094
24. Konopacky Q. M., Barman T. S., Macintosh B. A., Marois C. (2013). Detection of Carbon Monoxide and Water AbsorptionLines in an Exoplanet Atmosphere. Science, 339, 1398-1401.
https://doi.org/10.1126/science.1232003
25. Latouf N., Mandell A. M., Himes M. D., Moore M. D. (2024). Bayesian Analysis for Remote Biosignature Identificationon exoEarths (BARBIE). II. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for O2 and O3.Astron. J., 167(1), 13.
https://doi.org/10.3847/1538-3881/ad0fde
26. Lauretta D. S., Balram-Knutson S. S., Beshore E., et al. (2017). OSIRIS-REx: Sample Return from Asteroid (101955)Bennu. Space Sci. Rev., 212, 925-984.
https://doi.org/10.1007/s11214-017-0405-1
27. Lewis B. L. (2024). Applications of High-Contrast Imaging Techniques and Polarimetry to (Exo-) Planetary Science.
URL:https://www.proquest.com/openview/ea4b313d5bcc09c29a9b142534fe93e7 (Last accessed: 24.11.2024).
28. Lovis C., Fischer A. (2011). Radial Velocity Techniques for Exoplanets.
URL: https://www.researchgate.net/publication/253789798_Radial_Velocity_Techn... (Last accessed: 24.11.2024).
29. Macintosh B., Graham J. R., Barman T., Rosa R. J., Konopacky Q., Marley M. S., ... Nielsen E. L. (2015). Discovery andspectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager. Science, 350(6256), 64-67.
30. Mao S., Paczynski B. (1991). Gravitational microlensing by double stars and planetary systems. Astrophys. J., 374, 37-40.
https://doi.org/10.1086/186066
31. Marconi A., Abreu M., Adibekyan V., Aliverti M., Prieto C. A., Amado P. J., Artigau E. (2020). HIRES, the high-resolution spectrograph for the ELT.
URL: https://arxiv.org/pdf/2011.12317 (Last accessed: 24.11.2024).
32. Marois C., Zuckerman B., Konopacky Q. M., Macintosh B., Barman T. (2008). Direct Imaging of Multiple Planets Orbiting the Star HR 8799. Science, 322(5906), 1348-1352.
https://doi.org/10.1126/science.1166585
33. Mayor M., Queloz D. (1995). A Jupiter-mass Companion to a Solar-type Star. Nature, 378(6555), 355-359.
https://doi.org/10.1038/378355a0
34. Mayor M., Pepe F., Queloz D., Bouchy F., Rupprecht G., Curto G. L., Avila G. (1 de October de 2003). Setting new standards with HARPS.
URL: https://www.eso.org/sci/facilities/lasilla/instruments/harps/science/pap... (Last accessed: 24.11.2024).
35. Naponiello L., Bonomo A. S., Mancini L. (2025). The GAPS programme at TNG-LXIV: An inner eccentric sub-Neptune and an outer sub-Neptune-mass candidate around BD+ 00 444. Astron. and Astrophys., 693, 1-15.
https://doi.org/10.1051/0004-6361/202451859
36. NASA. (2023). NASA EXOPLANET ARCHIVE.
URL: https://exoplanetarchive.ipac.caltech.edu/ (Last accessed:24.11.2024).
37. Nielsen E. L., De Rosa R. J., Wang J. J., Sahlmann J., Kalas P., Duchêne G., Macintosh B. (2020). The Gemini PlanetImager Exoplanet Survey: Dynamical Mass of the Exoplanet β Pictoris b from Combined Direct Imaging and Astrometry.Astron. J., 159, 71.
https://doi.org/10.3847/1538-3881/ab5b92
38. Oppenheimer B. R., Hinkley S. (2009). High-Contrast Observations in Optical and Infrared Astronomy. Annu. Rev. Astron.and Astrophys., 47, 253-289.
https://doi.org/10.1146/annurev-astro-082708-101717
39. Parker L. T., Birkby J. L., Landman R., Wardenier J. P., Young M. E., Vaughan S. R., ... Line M. R. (2024). Into the red: anM-band study of the chemistry and rotation of β Pictoris b at high spectral resolution. Mon. Notic. Roy. Astron. Soc., 531,2356-2378.
https://doi.org/10.1093/mnras/stae1277
40. Pepe F., Cristiani S., Rebolo R., Santos N. C., Dekker H., Mégevand D, …, Zapatero Osorio M. R. (2013). ESPRESSO -An Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observations. The Messenger, 153, 6-16.
URL: https://www.eso.org/sci/publications/messenger/archive/no.153-sep13/mess... (Last accessed:24.11.2024).
41. Perryman M. (2018). The Exoplanet Handbook. Cambridge: University Press.
https://doi.org/10.1017/9781108304160
42. Perryman M. A. (2000). Extra-solar planets. Repts Progr. Phys., 63(8), 1209-1272.
https://doi.org/10.1088/0034-4885/63/8/202
43. Perryman M. A., Hartman J., Bakos G. Á., Lindegren L. (2014). Astrometric Exoplanet Detection with Gaia. Astrophys. J.797(1), 14.
https://doi.org/10.1088/0004-637X/797/1/14
44. Quanz S. P., Crossfield I, Meyer M. R., Schmalzl E., Held J. (2015). Direct detection of exoplanets in the 3-10 μm range with E-ELT/METIS. Int. J. Astrobiol., 14(2), 279-289.
https://doi.org/10.1017/S1473550414000135
45. Ricker G. R., Winn J. N., Vanderspek R., Latham D. W., Bakos G. Á., Bean J. L., ... Butler R. P. (2015). Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telescopes, Instruments, and Systems, 1, 014003.
46. Seager S. (2010). Exoplanet Atmospheres: Physical Processes. Princeton University Press.
https://doi.org/10.1515/9781400835300
47. Seager S., Deming D. (2010). Exoplanet Atmospheres. Annu. Rev. Astron. and Astrophys., 48, 631-672.
https://doi.org/10.1146/annurev-astro-081309-130837
48. Seager S., Mallén-Ornelas G. (2003). A unique solution of planet and star parameters from an extrasolar planet transit light curve. Astrophys. J., 585(2), 1038.
https://doi.org/10.1086/346105
49. Shallue C. J., Vanderburg A. (2018). Identifying exoplanets with deep learning: A five-planet resonance chain in the Kepler-90 system. Astron. J., 155(2), 94.
https://doi.org/10.3847/1538-3881/aa9e09
50. Sing D. K., Fortney J. J., Nikolov N., Wakeford H. R., Kataria T., Evans T. M., ... Huitson C. M. (2016). A continuum from
clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature, 529, 59-62.
https://doi.org/10.1038/nature16068
51. Snellen I. A. G., Snik F., Kenworthy M., Albrecht S., et al. (2022). Detecting life outside our solar system with a large highcontrast-imaging mission. Exp. Astron., 54, 1237-1274.
https://doi.org/10.1007/s10686-021-09803-y
52. Stevenson K. B., Lewis N. K., Bean J. L., Beichman C., Fraine J., Kilpatrick B. M., ... Agol E. (2016). Transiting ExoplanetStudies and Community Targets for JWST's Early Release Science Program. Publ. Astron. Soc. Pacif., 128(967), 094401.
https://doi.org/10.1088/1538-3873/128/967/094401
53. Taylor J., Radica M., Welbanks L., MacDonald R., Blecic J., Zamyatina M., ... , Ahrer E.-M. (2023). Awesome SOSS: atmospheric characterization of WASP-96 b using the JWST early release observations. Mon. Notic. Roy. Astron. Soc., 524(1), 817-834.
https://doi.org/10.1093/mnras/stad1547
54. The LUVOIR Team. (2020). Large Ultraviolet Optical Infrared Surveyor (LUVOIR): Mission Concept Study Final Report.
NASA Goddard Space Flight Center.
URL: https://www.luvoirtelescope.org
55. The LUVOIR Team. (2020). The LUVOIR Mission Concept Study Final Report NASA.
https://doi.org/10.48550/arXiv.1912.06219
56. Traub W. A., Oppenheimer B. R. (2010). Direct Imaging of Exoplanets. Exoplanets. Tucson, AZ: University of Arizona Press, 111-156.
57. Trifonov T. (2024). Radial velocity technique. Retrieved from Radial velocity technique.
https://arxiv.org/abs/2410.11424
https://doi.org/10.1016/B978-0-443-21439-4.00022-5
58. Unwin S. C., Shao M., Tanner A. M., et al. (2008). Taking the measure of the universe: Precision astrometry with SIM PlanetQuest. Publ. Astron. Soc. Pacif., 120 (863), 38.
https://doi.org/10.1086/525059
59. Vanderburg A., Johnson J. A. (2014). A Technique for Extracting Highly Precise Photometry for the Two-Wheeled KeplerMission. Publ. Astron. Soc. Pacif., 126 (944), 948.
https://doi.org/10.1086/678764
60. Winn J. N. (2010). Exoplanet transits and occultations. Ed. I. S. Seager. Arizona: University of Arizona Press.
61. Wolszczan A., Frail D. A. (1992). A Planetary System Around the Millisecond Pulsar PSR1257+12. Nature, 355(6356),145-147.
https://doi.org/10.1038/355145a0
62. Wright J. T., Gaudi B. S. (2013). Exoplanet detection methods. Planets, Stars and Stellar Systems. Eds T. D. Oswalt,L. M. French, P. Kalas. Dordrecht: Springer Science+Business Media, 489 p. ISBN 978-94-007-5605-2.
https://doi.org/10.1007/978-94-007-5606-9_10
63. Zingales T., Waldmann I. P. (2018). ExoGAN: Retrieving Exoplanetary Atmospheres Using Deep Convolutional GenerativeAdversarial Networks. Astron. J., 156(268), 14.
https://doi.org/10.3847/1538-3881/aae77c
https://doi.org/10.1086/672273
2. Barkaoui K., Schwarz R. P., Narita N., Mistry P., Magliano C., Hirano T., ..., Pass E. K. (2024). Three short-period Earthsized planets around M dwarfs discovered by TESS: TOI-5720 b, TOI-6008 b, and TOI-6086 b. Astron. and Astrophys., 687,1-24.
https://doi.org/10.1051/0004-6361/202349127
3. Batalha N. M. (2014). Exploring exoplanet populations with NASA's Kepler Mission. Proc. Nat. Acad. Sci., 111(35),12647-12654.
https://doi.org/10.1073/pnas.1304196111
4. Bean J. L., Stevenson K. B., Batalha N. M., Berta-Thompson Z., Kreidberg L., Crouzet N., ..., Wakeford H. R. (2018). TheTransiting Exoplanet Community Early Release Science Program for JWST. Publ. Astron. Soc. Pacif., 130, 114402.
5. Beichman C. A., Krist J., Trauger J. T., Greene T., Oppenheimer B., Sivaramakrishnan A., ... Rieke M. (2010). ImagingYoung Giant Planets From Ground and Space. Publ. Astron. Soc. Pacif., 122(888), 162-200.
https://doi.org/10.1086/651057
6. Borucki W. J. (2016). Kepler Mission: development and overview. Repts Progr. Phys., 79(3).
https://doi.org/10.1088/0034-4885/79/3/036901
7. Borucki W. J., Koch D., Basri G., Batalha N., Brown T., Caldwell D., ... Christensen-Dalsgaard J. (2010). Kepler Planet-Detection Mission: Introduction and First Results. Science, 327(5968), 977-980.
8. Burt J., Hooton M., Barragán O., Mamajek E., Fisher C., Seifahrt A., Brady M. (2024). Revising the Mass and Radius of aHigh-Demand JWST Super Earth Target. Bull. AAS, 56 (2).
9. Charbonneau D., Brown T. M., Burrows A., Laughlin G. (2006). When Extrasolar Planets Transit Their Parent Stars.
URL:https://arxiv.org/pdf/astro-ph/0603376
10. Chatterjee M., Sen A., Roy S. (2024). ExoSpikeNet: A Light Curve Analysis Based Spiking Neural Network for Exoplanet Detection. IEEE 13th Int. Conf. Communication Systems and Network Technologies (CSNT), 802-807.
https://doi.org/10.1109/CSNT60213.2024.10545663
11. Dattilo A., Vanderburg A., Shallue C. J., Mayo A. W., Berlind P., Bieryla A., Howell S. B. (2019). Identifying Exoplanetswith Deep Learning. II. Two New Super-Earths Uncovered by a Neural Network in K2 Data. Astron. J., 157, 169.
https://doi.org/10.3847/1538-3881/ab0e12
12. Einstein A. (1936). Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field. Science, 84(2188),506-507.
https://doi.org/10.1126/science.84.2188.506
13. ESA. (2024). How to find an exoplanet.
URL: https://www.esa.int/Science_Exploration/Space_Science/Exoplanets/How_to_... (Last accessed: 24.11.2024).
14. Fischer D. A., Howard A. W., Laughlin G. P., Macintosh B., Mahadevan S., Sahlmann J., Yee J. C. (2014). ExoplanetDetection Techniques.
https://doi.org/10.2458/azu_uapress_9780816531240-ch031
URL: https://arxiv.org/pdf/1505.06869
15. Fridlund M., Georgieva I. Y., Bonfanti A., Alibert Y. (2024). Planets observed with CHEOPS-Two super-Earths orbiting thered dwarf star TOI-776. Astron. and Astrophys., 684.
16. Gaia Collaboration. (2016). The Gaia mission. Astron. and Astrophys., 595(A1).
17. Gaudi B. S. (2012). Microlensing Surveys for Exoplanets. Annu. Rev. Astron. and Astrophys., 50, 411-453.
https://doi.org/10.1146/annurev-astro-081811-125518
18. Greene T. P., Bell T. J., Ducrot E., Dyrek A., Lagage P.-O., Fortney J. J. (2023). Thermal emission from the Earth-sizedexoplanet TRAPPIST-1 b using JWST. Nature, 618, 39-42.
https://doi.org/10.1038/s41586-023-05951-7
19. Han C., Lee C-U., Udalski A., Gould A., Bond I. A., et al. (2020). OGLE-2018-BLG-1700L: Microlensing Planet inBinary Stellar System. Astron. J., 159(2), 48.
https://doi.org/10.3847/1538-3881/ab5db9
20. Hatzes A. P. (2020). The Doppler Method for the Detection of Exoplanets. IOP Publishing
https://doi.org/10.1088/2514-3433/ab46a3
21. Hotnisky A., Kanodia S., Libby-Roberts J., Mahadevan S., Canas C. I., Gupta A. F., ..., Cochran W. D. (2024). Searching for GEMS: Two Super-Jupiters around M-dwarfs - Signatures of Instability or Accretion?
https://doi.org/10.3847/1538-3881/add2ef
URL: https://arxiv.org/abs/2411.08159(Last accessed: 24.11.2024).
22. Kasting J. F., Kopparapu R., Ramirez R. M., Harman C. E. (2014). Remote life-detection criteria, habitable zoneboundaries, and the frequency of Earth-like planets around M and late K stars. Proc. Nat. Acad. Sci., 111(35), 12641-12646.
https://doi.org/10.1073/pnas.1309107110
23. Kavanagh R. D., Vedantham H. K., Rose K., Bloot S. (2024). Unravelling sub-stellar magnetospheres. Astron. and Astrophys. 692, 15.
https://doi.org/10.1051/0004-6361/202452094
24. Konopacky Q. M., Barman T. S., Macintosh B. A., Marois C. (2013). Detection of Carbon Monoxide and Water AbsorptionLines in an Exoplanet Atmosphere. Science, 339, 1398-1401.
https://doi.org/10.1126/science.1232003
25. Latouf N., Mandell A. M., Himes M. D., Moore M. D. (2024). Bayesian Analysis for Remote Biosignature Identificationon exoEarths (BARBIE). II. Using Grid-based Nested Sampling in Coronagraphy Observation Simulations for O2 and O3.Astron. J., 167(1), 13.
https://doi.org/10.3847/1538-3881/ad0fde
26. Lauretta D. S., Balram-Knutson S. S., Beshore E., et al. (2017). OSIRIS-REx: Sample Return from Asteroid (101955)Bennu. Space Sci. Rev., 212, 925-984.
https://doi.org/10.1007/s11214-017-0405-1
27. Lewis B. L. (2024). Applications of High-Contrast Imaging Techniques and Polarimetry to (Exo-) Planetary Science.
URL:https://www.proquest.com/openview/ea4b313d5bcc09c29a9b142534fe93e7 (Last accessed: 24.11.2024).
28. Lovis C., Fischer A. (2011). Radial Velocity Techniques for Exoplanets.
URL: https://www.researchgate.net/publication/253789798_Radial_Velocity_Techn... (Last accessed: 24.11.2024).
29. Macintosh B., Graham J. R., Barman T., Rosa R. J., Konopacky Q., Marley M. S., ... Nielsen E. L. (2015). Discovery andspectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager. Science, 350(6256), 64-67.
30. Mao S., Paczynski B. (1991). Gravitational microlensing by double stars and planetary systems. Astrophys. J., 374, 37-40.
https://doi.org/10.1086/186066
31. Marconi A., Abreu M., Adibekyan V., Aliverti M., Prieto C. A., Amado P. J., Artigau E. (2020). HIRES, the high-resolution spectrograph for the ELT.
URL: https://arxiv.org/pdf/2011.12317 (Last accessed: 24.11.2024).
32. Marois C., Zuckerman B., Konopacky Q. M., Macintosh B., Barman T. (2008). Direct Imaging of Multiple Planets Orbiting the Star HR 8799. Science, 322(5906), 1348-1352.
https://doi.org/10.1126/science.1166585
33. Mayor M., Queloz D. (1995). A Jupiter-mass Companion to a Solar-type Star. Nature, 378(6555), 355-359.
https://doi.org/10.1038/378355a0
34. Mayor M., Pepe F., Queloz D., Bouchy F., Rupprecht G., Curto G. L., Avila G. (1 de October de 2003). Setting new standards with HARPS.
URL: https://www.eso.org/sci/facilities/lasilla/instruments/harps/science/pap... (Last accessed: 24.11.2024).
35. Naponiello L., Bonomo A. S., Mancini L. (2025). The GAPS programme at TNG-LXIV: An inner eccentric sub-Neptune and an outer sub-Neptune-mass candidate around BD+ 00 444. Astron. and Astrophys., 693, 1-15.
https://doi.org/10.1051/0004-6361/202451859
36. NASA. (2023). NASA EXOPLANET ARCHIVE.
URL: https://exoplanetarchive.ipac.caltech.edu/ (Last accessed:24.11.2024).
37. Nielsen E. L., De Rosa R. J., Wang J. J., Sahlmann J., Kalas P., Duchêne G., Macintosh B. (2020). The Gemini PlanetImager Exoplanet Survey: Dynamical Mass of the Exoplanet β Pictoris b from Combined Direct Imaging and Astrometry.Astron. J., 159, 71.
https://doi.org/10.3847/1538-3881/ab5b92
38. Oppenheimer B. R., Hinkley S. (2009). High-Contrast Observations in Optical and Infrared Astronomy. Annu. Rev. Astron.and Astrophys., 47, 253-289.
https://doi.org/10.1146/annurev-astro-082708-101717
39. Parker L. T., Birkby J. L., Landman R., Wardenier J. P., Young M. E., Vaughan S. R., ... Line M. R. (2024). Into the red: anM-band study of the chemistry and rotation of β Pictoris b at high spectral resolution. Mon. Notic. Roy. Astron. Soc., 531,2356-2378.
https://doi.org/10.1093/mnras/stae1277
40. Pepe F., Cristiani S., Rebolo R., Santos N. C., Dekker H., Mégevand D, …, Zapatero Osorio M. R. (2013). ESPRESSO -An Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observations. The Messenger, 153, 6-16.
URL: https://www.eso.org/sci/publications/messenger/archive/no.153-sep13/mess... (Last accessed:24.11.2024).
41. Perryman M. (2018). The Exoplanet Handbook. Cambridge: University Press.
https://doi.org/10.1017/9781108304160
42. Perryman M. A. (2000). Extra-solar planets. Repts Progr. Phys., 63(8), 1209-1272.
https://doi.org/10.1088/0034-4885/63/8/202
43. Perryman M. A., Hartman J., Bakos G. Á., Lindegren L. (2014). Astrometric Exoplanet Detection with Gaia. Astrophys. J.797(1), 14.
https://doi.org/10.1088/0004-637X/797/1/14
44. Quanz S. P., Crossfield I, Meyer M. R., Schmalzl E., Held J. (2015). Direct detection of exoplanets in the 3-10 μm range with E-ELT/METIS. Int. J. Astrobiol., 14(2), 279-289.
https://doi.org/10.1017/S1473550414000135
45. Ricker G. R., Winn J. N., Vanderspek R., Latham D. W., Bakos G. Á., Bean J. L., ... Butler R. P. (2015). Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telescopes, Instruments, and Systems, 1, 014003.
46. Seager S. (2010). Exoplanet Atmospheres: Physical Processes. Princeton University Press.
https://doi.org/10.1515/9781400835300
47. Seager S., Deming D. (2010). Exoplanet Atmospheres. Annu. Rev. Astron. and Astrophys., 48, 631-672.
https://doi.org/10.1146/annurev-astro-081309-130837
48. Seager S., Mallén-Ornelas G. (2003). A unique solution of planet and star parameters from an extrasolar planet transit light curve. Astrophys. J., 585(2), 1038.
https://doi.org/10.1086/346105
49. Shallue C. J., Vanderburg A. (2018). Identifying exoplanets with deep learning: A five-planet resonance chain in the Kepler-90 system. Astron. J., 155(2), 94.
https://doi.org/10.3847/1538-3881/aa9e09
50. Sing D. K., Fortney J. J., Nikolov N., Wakeford H. R., Kataria T., Evans T. M., ... Huitson C. M. (2016). A continuum from
clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature, 529, 59-62.
https://doi.org/10.1038/nature16068
51. Snellen I. A. G., Snik F., Kenworthy M., Albrecht S., et al. (2022). Detecting life outside our solar system with a large highcontrast-imaging mission. Exp. Astron., 54, 1237-1274.
https://doi.org/10.1007/s10686-021-09803-y
52. Stevenson K. B., Lewis N. K., Bean J. L., Beichman C., Fraine J., Kilpatrick B. M., ... Agol E. (2016). Transiting ExoplanetStudies and Community Targets for JWST's Early Release Science Program. Publ. Astron. Soc. Pacif., 128(967), 094401.
https://doi.org/10.1088/1538-3873/128/967/094401
53. Taylor J., Radica M., Welbanks L., MacDonald R., Blecic J., Zamyatina M., ... , Ahrer E.-M. (2023). Awesome SOSS: atmospheric characterization of WASP-96 b using the JWST early release observations. Mon. Notic. Roy. Astron. Soc., 524(1), 817-834.
https://doi.org/10.1093/mnras/stad1547
54. The LUVOIR Team. (2020). Large Ultraviolet Optical Infrared Surveyor (LUVOIR): Mission Concept Study Final Report.
NASA Goddard Space Flight Center.
URL: https://www.luvoirtelescope.org
55. The LUVOIR Team. (2020). The LUVOIR Mission Concept Study Final Report NASA.
https://doi.org/10.48550/arXiv.1912.06219
56. Traub W. A., Oppenheimer B. R. (2010). Direct Imaging of Exoplanets. Exoplanets. Tucson, AZ: University of Arizona Press, 111-156.
57. Trifonov T. (2024). Radial velocity technique. Retrieved from Radial velocity technique.
https://arxiv.org/abs/2410.11424
https://doi.org/10.1016/B978-0-443-21439-4.00022-5
58. Unwin S. C., Shao M., Tanner A. M., et al. (2008). Taking the measure of the universe: Precision astrometry with SIM PlanetQuest. Publ. Astron. Soc. Pacif., 120 (863), 38.
https://doi.org/10.1086/525059
59. Vanderburg A., Johnson J. A. (2014). A Technique for Extracting Highly Precise Photometry for the Two-Wheeled KeplerMission. Publ. Astron. Soc. Pacif., 126 (944), 948.
https://doi.org/10.1086/678764
60. Winn J. N. (2010). Exoplanet transits and occultations. Ed. I. S. Seager. Arizona: University of Arizona Press.
61. Wolszczan A., Frail D. A. (1992). A Planetary System Around the Millisecond Pulsar PSR1257+12. Nature, 355(6356),145-147.
https://doi.org/10.1038/355145a0
62. Wright J. T., Gaudi B. S. (2013). Exoplanet detection methods. Planets, Stars and Stellar Systems. Eds T. D. Oswalt,L. M. French, P. Kalas. Dordrecht: Springer Science+Business Media, 489 p. ISBN 978-94-007-5605-2.
https://doi.org/10.1007/978-94-007-5606-9_10
63. Zingales T., Waldmann I. P. (2018). ExoGAN: Retrieving Exoplanetary Atmospheres Using Deep Convolutional GenerativeAdversarial Networks. Astron. J., 156(268), 14.
https://doi.org/10.3847/1538-3881/aae77c
