Thermal vacuum testing and characteristics of the Polyitan- НР-30 2U CubeSat university nanosatellite
Heading:
| 1Rassamakin, BM, 1Khominich, VI, 1Rogachov, VA, 1Demchyshyn, AА, 1Kozak, DV, 1Poshtarenko, Yu.A 1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine |
| https://doi.org/10.15407/knit2025.04.012 |
| Publication Language: English |
Abstract: The paper presents the results of thermal vacuum tests of the PolyITAN-HP-30 university nanosatellite of the 2U CubeSat format under the conditions of ground-based physical modeling of the main operating factors of outer space, which satisfy the sun-synchronous orbit with an altitude of up to 550 km. The tests were conducted following the requirements of the European Community for Space Standardization (ECSS) and are standardized and regulated by documents. The performed thermal vacuum tests are a mandatory and important stage for the development of reliable space equipment, which extends its operational lifespan.
The equipment for thermal vacuum tests available at National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» (Igor Sikorsky Kyiv Polytechnic Institute) provides modeling of “cold” and “black” space, fosters the implementation of scientific and technical approaches and solutions for the development and implementation of new space technologies and methods for conducting thermal vacuum research/tests, and helps to develop measurement tools and systems to obtain reliable technical characteristics of working components and assemblies of the spacecraft.
The article describes the structure and construction of the university nanosatellite (NS). The main characteristics of the electronic components, the payload of the NS in the form of a thermal stabilization system from mini-heat pipes, are presented. The authors emphasize that the electronic platforms include mass-produced elements that are usually not designed to operate in the harsh conditions of outer space and, therefore, require careful verification of their functioning in these conditions.
The article specifies the main requirements for conducting ground-based research and testing of a university NS. References are given to the main characteristics of the bench equipment used in the work, as well as the quantitative characteristics of the NS. The test results are presented in the form of graphical dependences of the temperature changes of the NS’s elements on time. The analysis of the data obtained from thermal balance tests in the cycling mode in the temperature range from minus 20oС to plus 50 oС was carried out. The flight sample of the NS was degassed at ambient temperatures in the experimental chamber from 50 oС to 55 oС and a vacuum of 1.0x10-5 Torr. Losses after degassing the NS amounted to no more than 0.1% of its mass. The duration of degassing after thermal stabilization in the chamber lasted 4.5 hours.
The tests performed ensured verification of thermal regimes of various components of the spacecraft and onboard equipment in conditions close to their operation in Earth orbit. The results obtained showed the correctness of modeling the main factors of space in thermal cycling and degassing regimes and confirmed the ability of the spacecraft to perform operational functions with stability of parameter values within the limits specified by the regulatory and technical documentation.
|
References:
1. Arcos, Y., Gurfil, P., and Koenig, M. (2021). Optimized design of a thermal vacuum testbed for nanosatellite verification tests // Journal of Small Satellites, Vol. 10, No. 3, 1075-1095. [in English] https://jossonline.com/optimized-design-of-a-thermal-vacuum-testbed-for-...fication-tests/
2. Buitrago-Leiva, J. N., Terraza-Palanca, I., Contreras-Benito, L., Fernandez, L., Gracia-Sola, G., del Castillo Sancho, C. d. C., Ha, L., Palma, D., Solyga, M., & Camps, A. (2024). The 3Cat-4 Spacecraft Thermal Analysis and Thermal Vacuum Test Campaign Results. Aerospace, 11(10), 805. [in English]
https://doi.org/10.3390/aerospace11100805
3. ECSS-Q-70-09A. (2003). Space product assurance. Measurements of thermo-optical properties of thermal control materials. ECSS Secretariat. Noordwijk, The Netherlands. 34 p. [in English] https://ecss.nl/standard/ecss-q-70-09a-space-product-assurance-measureme...
4. ECSS-Q-ST-70-02C. (2008). Space product assurance. Thermal vacuum outgassing test for the screening of space materials. ECSS Secretariat. Noordwijk, The Netherlands. 45 p. [in English] https://ecss.nl/standard/ecss-q-st-70-02c-thermal-vacuum-outgassing-test...
5. ECSS-Q-ST-70-04C. (2008). Space product assurance. Thermal testing for the evaluation of space materials, processes, mechanical parts and assemblies. ECSS Secretariat. Noordwijk, The Netherlands. 25 p. [in English] https://ecss.nl/standard/ecss-q-st-70-04c-thermal-testing-for-the-evalua...
6. Kim, J.-S., & Kim, H.-D. (2021). Thermal Model Correlation and Validation of a 6U Nanosatellite with Multiple Payloads. International Journal of Aeronautical and Space Sciences, 23(1), 207-220. [in English]
https://doi.org/10.1007/s42405-021-00409-4
7. Kopacz, J. R., Herschitz, R., & Roney, J. (2020). Small satellites an overview and assessment. Acta Astronautica, 170, 93-105. [in English]
https://doi.org/10.1016/j.actaastro.2020.01.034
8. Kravets, V., Alekseik, Y., Alekseik, O., Khairnasov, S., Baturkin, V., Ho, T., & Celotti, L. (2017). Heat pipes with variable thermal conductance property for space applications. Journal of Mechanical Science and Technology, 31(6), 2613-2620. [in English]
https://doi.org/10.1007/s12206-017-0503-8
9. Lucchetta, G. (2021). MeVCube: a CubeSat for MeV astronomy. 37th International Cosmic Ray Conference. Sissa Medialab. [in English]
https://doi.org/10.22323/1.395.0647
10. Miao, J., Zhong, Q., Zhao, Q., & Zhao, X. (2021). Spacecraft Thermal Control Technologies. Springer Singapore. [in English]
2. Buitrago-Leiva, J. N., Terraza-Palanca, I., Contreras-Benito, L., Fernandez, L., Gracia-Sola, G., del Castillo Sancho, C. d. C., Ha, L., Palma, D., Solyga, M., & Camps, A. (2024). The 3Cat-4 Spacecraft Thermal Analysis and Thermal Vacuum Test Campaign Results. Aerospace, 11(10), 805. [in English]
https://doi.org/10.3390/aerospace11100805
3. ECSS-Q-70-09A. (2003). Space product assurance. Measurements of thermo-optical properties of thermal control materials. ECSS Secretariat. Noordwijk, The Netherlands. 34 p. [in English] https://ecss.nl/standard/ecss-q-70-09a-space-product-assurance-measureme...
4. ECSS-Q-ST-70-02C. (2008). Space product assurance. Thermal vacuum outgassing test for the screening of space materials. ECSS Secretariat. Noordwijk, The Netherlands. 45 p. [in English] https://ecss.nl/standard/ecss-q-st-70-02c-thermal-vacuum-outgassing-test...
5. ECSS-Q-ST-70-04C. (2008). Space product assurance. Thermal testing for the evaluation of space materials, processes, mechanical parts and assemblies. ECSS Secretariat. Noordwijk, The Netherlands. 25 p. [in English] https://ecss.nl/standard/ecss-q-st-70-04c-thermal-testing-for-the-evalua...
6. Kim, J.-S., & Kim, H.-D. (2021). Thermal Model Correlation and Validation of a 6U Nanosatellite with Multiple Payloads. International Journal of Aeronautical and Space Sciences, 23(1), 207-220. [in English]
https://doi.org/10.1007/s42405-021-00409-4
7. Kopacz, J. R., Herschitz, R., & Roney, J. (2020). Small satellites an overview and assessment. Acta Astronautica, 170, 93-105. [in English]
https://doi.org/10.1016/j.actaastro.2020.01.034
8. Kravets, V., Alekseik, Y., Alekseik, O., Khairnasov, S., Baturkin, V., Ho, T., & Celotti, L. (2017). Heat pipes with variable thermal conductance property for space applications. Journal of Mechanical Science and Technology, 31(6), 2613-2620. [in English]
https://doi.org/10.1007/s12206-017-0503-8
9. Lucchetta, G. (2021). MeVCube: a CubeSat for MeV astronomy. 37th International Cosmic Ray Conference. Sissa Medialab. [in English]
https://doi.org/10.22323/1.395.0647
10. Miao, J., Zhong, Q., Zhao, Q., & Zhao, X. (2021). Spacecraft Thermal Control Technologies. Springer Singapore. [in English]
https://doi.org/10.1007/978-981-15-4984-7
11. Nikolaenko, Y. E., Pis'mennyi, E. N., Pekur, D. V., Sorokin, V. M., Кravets, V. Y., Melnyk, R. S., Kozak, D. V., & Solomakha, A. S. (2024). The efficiency of using simple heat pipes with a relatively low thermal conductivity for cooling transmit/receive modules. Applied Thermal Engineering, 236, 121512. [in English]
https://doi.org/10.1016/j.applthermaleng.2023.121512
12. Pekur, D. V., Nikolaenko, Y. E., Kravets, V. Y., Kozak, D. V., Sorokin, V. M., & Nikolaienko, T. Y. (2024). Corrigendum to "Comparison of thermal characteristics of three modifications of gravity heat pipe with threaded evaporator at different inclination angles" [Thermal Sci. Eng. Prog. 46 (2024) 102219]. Thermal Science and Engineering Progress, 102496. [in English]
https://doi.org/10.1016/j.tsep.2024.102496
13. Peraza-Acosta, B., Grageda-Arellano, J. I., Couder-Castañeda, C., Meléndez-Martínez, J., Padilla-Pérez, D. A., & Solis-Santome, A. (2025). Design and manufacture of CubeSat-type nanosatellite thermal subsystem. Scientific Reports, 15(1). [in English]
https://doi.org/10.1038/s41598-025-86688-3
14. Poshtarenko, Y. A., Rassamakin, B. M., Rogachov, V. A., Khominich, V. I., & Shevchenko, M. D. (2022). Means of measurement of heat flows in thermal vacuum research and testing of products of space engineering. Space science and technology, 28(1), 51-60.
https://doi.org/10.15407/knit2022.01.051
15. Poshtarenko, Y. A., Rassamakin, B. M., Sydorenko, Y. M., Khominich, V. I., & Shevchenko, M. D. (2020). Research and Testing Experimental Thermal Vacuum Stand TVK-2,5. Space science and technology, 26(6), 23-26. [in English]
https://doi.org/10.15407/knit2020.06.023
16. Praks, J., Mughal, M. R., Vainio, R., Janhunen, P., Envall, J., Oleynik, P., Näsilä, A., Leppinen, H., Niemelä, P., Slavinskis, A., Gieseler, J., Toivanen, P., Tikka, T., Peltola, T., Bosser, A., Schwarzkopf, G., Jovanovic, N., Riwanto, B., Kestilä, A., Virtanen, A. (2021). Aalto-1, multi-payload CubeSat: Design, integration and launch. Acta Astronautica, 187, 370-383. [in English]
https://doi.org/10.1016/j.actaastro.2020.11.042
17. Rassamakin, B., Khairnasov, S., & Anisimova, A. (2016). Thermal performance of aluminium grooved heat pipes. 2016 International Conference on Electronics and Information Technology (EIT). IEEE. [in English]
https://doi.org/10.1109/ICEAIT.2016.7500979
18. Rogachov, V. A., Kozak, D. V., Melnyk, R. S., Poshtarenko, Y. A., Rassamakin, B. M., Khominich, V. I., Zakharov, V. V., & Moskalova, T. V. (2023). Thermal vacuum research of samples of multi-layer insulation. Space science and technology, 29(6), 51-61.
https://doi.org/10.15407/knit2023.06.051
19. Song, Y., Park, S.-Y., & Lee, S. (2021). Development of Spacecraft Formation Flying System for SNIPE Mission using Four Nanosats. AIAA Scitech 2021 Forum. American Institute of Aeronautics and Astronautics. [in English]
https://doi.org/10.2514/6.2021-0426
20. Tessari, V., Silva dos Santos, L., Bibow Corrêa, C. E., Donati, D., paiva, k., Viesser, E., Possamai, T., & Oba, R. (2023). Analysis of a thermal vacuum chamber project for nanosatellites
11. Nikolaenko, Y. E., Pis'mennyi, E. N., Pekur, D. V., Sorokin, V. M., Кravets, V. Y., Melnyk, R. S., Kozak, D. V., & Solomakha, A. S. (2024). The efficiency of using simple heat pipes with a relatively low thermal conductivity for cooling transmit/receive modules. Applied Thermal Engineering, 236, 121512. [in English]
https://doi.org/10.1016/j.applthermaleng.2023.121512
12. Pekur, D. V., Nikolaenko, Y. E., Kravets, V. Y., Kozak, D. V., Sorokin, V. M., & Nikolaienko, T. Y. (2024). Corrigendum to "Comparison of thermal characteristics of three modifications of gravity heat pipe with threaded evaporator at different inclination angles" [Thermal Sci. Eng. Prog. 46 (2024) 102219]. Thermal Science and Engineering Progress, 102496. [in English]
https://doi.org/10.1016/j.tsep.2024.102496
13. Peraza-Acosta, B., Grageda-Arellano, J. I., Couder-Castañeda, C., Meléndez-Martínez, J., Padilla-Pérez, D. A., & Solis-Santome, A. (2025). Design and manufacture of CubeSat-type nanosatellite thermal subsystem. Scientific Reports, 15(1). [in English]
https://doi.org/10.1038/s41598-025-86688-3
14. Poshtarenko, Y. A., Rassamakin, B. M., Rogachov, V. A., Khominich, V. I., & Shevchenko, M. D. (2022). Means of measurement of heat flows in thermal vacuum research and testing of products of space engineering. Space science and technology, 28(1), 51-60.
https://doi.org/10.15407/knit2022.01.051
15. Poshtarenko, Y. A., Rassamakin, B. M., Sydorenko, Y. M., Khominich, V. I., & Shevchenko, M. D. (2020). Research and Testing Experimental Thermal Vacuum Stand TVK-2,5. Space science and technology, 26(6), 23-26. [in English]
https://doi.org/10.15407/knit2020.06.023
16. Praks, J., Mughal, M. R., Vainio, R., Janhunen, P., Envall, J., Oleynik, P., Näsilä, A., Leppinen, H., Niemelä, P., Slavinskis, A., Gieseler, J., Toivanen, P., Tikka, T., Peltola, T., Bosser, A., Schwarzkopf, G., Jovanovic, N., Riwanto, B., Kestilä, A., Virtanen, A. (2021). Aalto-1, multi-payload CubeSat: Design, integration and launch. Acta Astronautica, 187, 370-383. [in English]
https://doi.org/10.1016/j.actaastro.2020.11.042
17. Rassamakin, B., Khairnasov, S., & Anisimova, A. (2016). Thermal performance of aluminium grooved heat pipes. 2016 International Conference on Electronics and Information Technology (EIT). IEEE. [in English]
https://doi.org/10.1109/ICEAIT.2016.7500979
18. Rogachov, V. A., Kozak, D. V., Melnyk, R. S., Poshtarenko, Y. A., Rassamakin, B. M., Khominich, V. I., Zakharov, V. V., & Moskalova, T. V. (2023). Thermal vacuum research of samples of multi-layer insulation. Space science and technology, 29(6), 51-61.
https://doi.org/10.15407/knit2023.06.051
19. Song, Y., Park, S.-Y., & Lee, S. (2021). Development of Spacecraft Formation Flying System for SNIPE Mission using Four Nanosats. AIAA Scitech 2021 Forum. American Institute of Aeronautics and Astronautics. [in English]
https://doi.org/10.2514/6.2021-0426
20. Tessari, V., Silva dos Santos, L., Bibow Corrêa, C. E., Donati, D., paiva, k., Viesser, E., Possamai, T., & Oba, R. (2023). Analysis of a thermal vacuum chamber project for nanosatellites
