The use of derivative vegetation indices for the estimation of chlorophyll content in vegetation on the basis of satellite data

1Kochubei, SM, 1Kazantsev, TA
1Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2011, 17 ;(3):54-59
https://doi.org/10.15407/knit2011.03.054
Publication Language: Russian
Abstract: 
The possibility to use derivative vegetation indices for the monitoring of vegetation on the basis of satellite hyperspectral measurements is studied. Soil-vegetation models are employed to calculate the derivative vegetation index D725 /D702 with the use of reflectance spectra of leaves. It is shown that a decrease in spectral resolution down to 10 nm, which corresponds to the maximum value for satellite hyperspectral sensors, causes no significant changes in the D725 /D702  value. Variations of the index lay in the range from 2 to 7 % in the case of full soil covering and do not exceed 16 % for the most complicated model configuration which is 25 % soil covering, a low chlorophyll content and a high soil reflectance. The results are tested practically by analyzing the spectral image of wheat crops obtained with the hyperspectral sensor Hyperion onboard the satellite EO-1. A high correlation is revealed between the reflectance in the green region of the spectra of the wheat crops from the image and the chlorophyll content calculated with the use of the D725 /D702  index.
Keywords: chlorophyll, hyperspectral measurements, soil-vegetation models
References: 
1. Andrianova Yu. E., Tarchevsky I. A. Chlorophyll and Plant Productivity, 135 p. (Nauka, Moscow, 2000) [in Russian].
2. Kazantsev T. A., Tumenok L. V., Kochubey S. M. Remote measurements of dynamics of chlorophyll content in wheat crops. Fiziol. i biohim. kul't. rastenij, 42 (6), 544—549 (2010) [in Russian].
3. Kochubei S. M. Estimation of the main characteristics of agricultural crops from reflectance spectrum of vegetation in the optical range. Kosm. nauka tehnol., 9 (5-6), 185—190 (2003) [in Russian].
 
4. Kochubey S. M., Kazantsev T. A., Donets V. V. The use of derivative vegetation  indices for the elimination of interferences caused by soil reflection in remote sensing of vegetative cover. Kosm. nauka tehnol., 14 (3), 69—74 (2008) [in Russian].
5. Kochubey S. M., Kobets N. I., Shadchina T. M. The quantitative analysis of shape of spectral reflectance curves of plant leaves as a way for testing their status. Fiziol. i biohim. kul't. rastenij, 20 (6), 535—539 (1988) [in Russian].
6. Kochubey S. M., Kobets N. I., Shadchina T. M. Spectral Properties of Plants as a Basis for the Methods of Remote Diagnostic, 136 p. (Naukova dumka, Kiev, 1990) [in Russian].
7. Davids C., Tyler A. N. Detecting contamination-induced tree stress within the Chernobyl exclusion zone. Remote Sens. Environ., 85 (1), 30—38 (2003).
https://doi.org/10.1016/S0034-4257(02)00184-0
8. Graeff S., Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur. J. Agron., 19 (4), 611—618 (2003).
https://doi.org/10.1016/S1161-0301(03)00007-8
9. Kochubey S. M., Bidyuk P. I. Novel approach to remote sensing of vegetation. Proc. of SPIE, 5093, 181—188 (2003).
https://doi.org/10.1117/12.486023
10. Kochubey S. M., Kazantsev T. A. Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content. J. Plant Physiol., 164 (12), 1648— 1655 (2007).
https://doi.org/10.1016/j.jplph.2006.11.007
11. Kochubey S. M., Yatsenko V. A. Monitoring system for agricultural crops on chlorophyll basis. Proc. of SPIE, 5232, 92—99 (2003).
https://doi.org/10.1117/12.512074
12. Lamb D. W., Steyn-Ross M., Schaares P., et al. Estimating leaf nitrogen concentration in ryegrass. Int. J. Rem. Sens., N 23, 3619—3648 (2002).
13. Smith K. L., Steven M .D., Colls J. J. Use of hyperspectral derivative ratios in the red edge region to identify plant stress responses to gas leaks. Remote Sens. Environ., 92, 207—217 (2004).
https://doi.org/10.1016/j.rse.2004.06.002

14. Zarko-Tejada P. J., Miller J. R., Morales A., et al. Hyper-spectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ., 90, 463—476 (2004).
https://doi.org/10.1016/j.rse.2004.01.017