Evaluation of the acoustic-gravity wave period on the basis of direct satellite measurements

1Fedorenko, AK
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(6):24-32
https://doi.org/10.15407/knit2010.06.024
Publication Language: Russian
Abstract: 
The possibility of AGW period evaluation on the basis of single-point satellite measurements is analysed. Some amplitude and phase differences depending on wave spectral characteristics and environmental features are detected in variations of different atmospheric parameters which are caused by the AGW propagation. The comparison between the theoretical relationships linking different AGW parameters and their experimental behaviour enables us to estimate spectral characteristics of these waves, which is impossible from direct measurements. We present several methods for the estimation of the AGW period which are based on synchronous satellite measurements of different parameters. The periods of the waves observed from the DE2 satellite are calculated.
Keywords: acoustic-gravity waves, amplitude and phase differences, spectral characteristics
References: 
1. Burmaka V. P., Taran V. I., Chernogor L. F. Results of Studying Wave-Like Disturbances in the Ionosphere Using the Incoherent Scatter Method. Usp. Sovrem. Radioelektron., No. 3, 4—35 (2005) [in Russian].
2. Grigor’ev G. I. Acoustic-gravity waves in the earth’s atmosphere. Yzv. VUZov. Radyofyzyka, 42 (1), 3—25 (1999) [in Russian].
3. Fedorenko A. K. Satellite observations of middlescale acoustic gravity waves above the polar caps. Kosm. nauka tehnol., 14 (5), 65—73 (2008) [in Russian].
https://doi.org/10.15407/knit2008.05.065
4. Fedorenko A. K. Determination Characteristics of Atmospheric Gravity Waves in the Polar Regions Using Mass-Spectrometer Satellite Measurements. Radio Physics and Radio Astronomy, 14 (3), 254—265 (2009) [in Ukrainian].
5. Fedorenko A. K. Energy balance of acoustic gravity waves above the polar caps according to the data of satellite measurements. Geomagnetizm i Aeronomiia, 50 (1), 111—122 (2010) [in Russian].
https://doi.org/10.1134/S0016793210010123
6. Carignan G. R., Block B. P., Maurer J. C., et al. The neutral mass Spectrometer on Dynamics Explorer. Space Sci. Instrum., 5, P. 429 (1981).
7. Dudis J. J., Reber C. A. Composition effects in thermospheric gravity waves. Geophys. Res. Lett., 3 (12), 727—730 (1976).
https://doi.org/10.1029/GL003i012p00727
8. Hunsucker R. Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev. Geophys. Space Phys., 20, 293—315 (1982).
https://doi.org/10.1029/RG020i002p00293
9. Johnson F. S., Hanson W. B., Hodges R. R., et al. Gravity waves near 300 km over the polar caps. J. Geophys. Res., 100, 23993—24002 (1995).
https://doi.org/10.1029/95JA02858
10. Makhlouf U. R., Dewan E. A., Isler J., Tuan T. F. On the importance of the purely gravitationally induced density, pressure and temperature variations in gravity waves: Their application to airglow observations. J. Geophys. Res., 95, 4103—4111 (1990).
https://doi.org/10.1029/JA095iA04p04103
11. Spencer N. W., Wharton L. E., Niemann H. B., et al. The Dynamics Explorer wind and temperature spectrometer. Space Sci. Instruments, 5, P. 417 (1981).

12. Yeh K. S., Liu C. H. Acoustic-gravity waves in the upper atmosphere. Rev. Geophys. Space. Phys., 12, 193—216 (1974).
https://doi.org/10.1029/RG012i002p00193