Polarity of spore germination in Funaria hygrometrica Hedw.

1Pundyak, OI, 1Demkiv, OT, 1Khorkavtsiv, OYa., 1Bagrii, ВВ
1Institute of Ecology of the Carpathians of the National Academy of Sciences of Ukraine, L’viv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(1):096-100
https://doi.org/10.15407/knit2002.01.096
Publication Language: Ukrainian
Abstract: 
It is shown that in darkness the spores of moss Funaria hygrometrica Hedw. germinated polarly under the influence of gravity. At the beginning the rhizoids appeared. They grew downwards. Then future chloronematical stolons started to form a germinating spore. Usually, they grew upwards. Clinorotation or horizontal placing of Petry dishes could discoordinate such a gravisensitivity.
Keywords: chloronematical stolons, clinorotation, Petry dishes
References: 
1. Demkiv O. T., Sytnik K. M. Morphogenesis of Archegoniates, 203 p. (Naukova Dumka, Kiev, 1985) [in Russian].
2. Medvedev S. S. Physiological Basics of Plant Polarity, 160 p. (Kol’na, St.Petersburg, 1996) [in Russian].
3. Merkys A. I. Force of gravity in processes of plant growth. In: Problems of  Cosmic Biology, Vol. 68, 185 p. (Nauka, Moscow, 1990) [in Russian].
4. Barlow P. W. Gravity perception in plants: a multiplicity of systems derived by evolution? Plant Cell Environ., 18 (951), 951—962 (1995).
https://doi.org/10.1111/j.1365-3040.1995.tb00606.x
5. Bentrup F. W. Cellular Polarity. Encycl. Plant Physiol., 17, 472—490 (1984).
6. Chaban C. I., Kern V. D., Ripetskyj R. T., et al. Gravitropism in caulonemata of the moss Pottia intermedia. J. of Bryology, 20, 287—299 (1998).
https://doi.org/10.1179/jbr.1998.20.2.287
7. Chaban C. I., Kordyum E. L., Demkiv O. T., et al. The gravireaction of Ceratodon protonemata treated with gibberellic acid. Adv. Space Res., 24 (6), 717—721 (1999).
https://doi.org/10.1016/S0273-1177(99)00404-4
8. Demkiv O. T., Kordyum E. L., Khorkavtsiv Ya. D., et al. Behavior of amyloplasts in photo- and gravitropism of the moss protonema. J. of Gravitational Physiology, 4 (2), 75—76 (1997).
9. Demkiv O. T., Kordyum E. L., Kardash O. R., Khorkavtsiv O. Ya. Gravitropism and phototropism in protonemata of the moss Pohlia nutans (Hedw.) Lindb. Adv. Space Res., 22 (12), 1999—2004 (1999).
https://doi.org/10.1016/S0273-1177(99)00349-X
10. Goodner B., Quatrano R. S. Fucus embryogenesis: a model to study the establishment of polarity. The plant Cell, 5 (10), 1471 — 1481 (1993).
https://doi.org/10.1105/tpc.5.10.1471
11. Hepler P. K. Tip growth in pollen tubes: calcium leads the way. Trends in Plant Science, 2, 79—80 (1997).
https://doi.org/10.1016/S1360-1385(97)88385-9
12. Jenkins G., Courtice G., Cove D. Gravitropic responses of wild-type and mutant strains of the moss Physcomitrella patens. Plant Cell and Environment, 9, 637—644 (1986).
https://doi.org/10.1111/j.1365-3040.1986.tb01621.x
13. Kordyum E., Guikema J. An active role of the amyloplasts and nuclei of root statocytes in graviperception. Adv. Space Res., 27 (5), 951—956 (2001).
https://doi.org/10.1016/S0273-1177(01)00162-4
14. Moor R., Evans M. L. How roots perceive and respond to gravity. Am. J. Bot., 73, 574—587 (1986).
https://doi.org/10.1002/j.1537-2197.1986.tb12077.x
15. Sack F. D. Gravitropism in protonemata of the moss Ceratodon. Mem. Torrey Bot. Club, 25 (1), 36—44 (1993).
16. Walker L. M., Sack F. D. Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus. Planta, 181, 71—77 (1990).
https://doi.org/10.1007/BF00202326

17. Young J. C, Sack F. D. Time-lapse analysis of gravitropism in Ceratodon protonemata. Amer. J. Bot., 79, 1348—1358 (1992).
https://doi.org/10.1002/j.1537-2197.1992.tb13744.x