L- [14С] -glutamate uptake by nerve terminals from rat cerebellum and cerebral hemispheres under artificial hypergravity

1Borisova, TA, 1Krisanova, NV, 2Himmelreich, NH
1Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
2O.V. Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(1):101-106
https://doi.org/10.15407/knit2002.01.101
Publication Language: Українська
Abstract: 
Using synaptosomes from rat cerebellum and cerebral hemispheres, we investigated the effect of hypergravity on the kinetic parameters Км and Vmax of the Na+-dependent, high-affinity L- [14С] -glutamate transport activity. The hypergravity stress was created by centrifugation of rats for 1 hour at 10g. We observed no differences in  Км values for cerebellum and cerebral hemisphere synaptosomes between the control rats — 18.2±7.6 μM (cerebellum), 10.7± ±2.5 μM (cerebral hemispheres) and the animals exposed to hypergravity — 23.3± 6.9 μM (cerebellum), 6.7±1.5 μM (cerebral hemispheres). The similarity of this parameter for the two groups of animals showed that the affinity of glutamate transporter to substrate in cerebellum and cerebral hemispheres was not sensitive to hypergravity stress. The maximal velocity of  L- [14С] -glutamate uptake (Vmax) diminished for cerebellum synaptosomes from 9.6±3.9 nmol/min/mg of protein in the control group to 7.4±2.0 nmol/min/mg of protein in the animals exposed to hypergravity stress and for cerebral hemisphere synaptosomes from 12.5±3.2 nmol/min/mg of protein to 5.6±0.9 nmol/min/mg of protein, respectively. It was also shown that the hypergravity effect on the level of L- [14С] -glutamate uptake was different for cerebellum and cerebral hemisphere synaptosomes. Only for cerebellum synaptosomes, a significant decrease in the level of L- [14С] -glutamate uptake was observed. Possible mechanisms of the attenuation of glutamate transporter activity are discussed.
Keywords: glutamate transporter, hypergravity stress, synaptosomes
References: 
1. Gazenko O. G., Genin A. M., Il'in E. A., et al. Adaptation to weightlessness and its physiological mechanisms. Izv Akad Nauk SSSR Biol., 1, 5—18 (1980) [in Russian].
2. Chernigovsky V. N. Problems of Space Biology, 15, 355 p. (Nauka, Moscow, 1971) [in Russian].
3. Cotman C. W. Isolation of synaptosomal and synaptic plasma membrane fractions. Methods Enzymol., 31, 445—452 (1974).
https://doi.org/10.1016/0076-6879(74)31050-6
4. D'Amelio F., Fox R. A., Wu L. C, Daunton N. G. Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension. J. Neurosci Res., 44 (6), 532—539 (1996).
https://doi.org/10.1002/(SICI)1097-4547(19960615)44:6<532::AID-JNR3>3.0.CO;2-C
5. D'Amelio F., Wu L. C, Fox R. A, et al. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis. J. Neurosci Res., 15 (53), 135—142 (1998).
https://doi.org/10.1002/(SICI)1097-4547(19980715)53:2<135::AID-JNR2>3.0.CO;2-8
6. Fox R. A. Effects of Artificial Gravity: Central Nervous System Neurochemical Studies. NASA Taskbook, 619— 620 (1997).
7. Gegelashvili G., Schousboe A. Cellular Distribution and Kinetic Properties of Affinity Glutamate Transporters. Brain Res. Bull., 45 (3), 233—238 (1998).
https://doi.org/10.1016/S0361-9230(97)00417-6
8. Hughes-Fulford M. Altered cell function in microgravity. Exp. Gerontol., 26 (2-3), 247—256 (1991).
https://doi.org/10.1016/0531-5565(91)90017-G
9. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem., 155, 243—248 (1986).
https://doi.org/10.1016/0003-2697(86)90432-X
10. Lipton S. A., Rosenberg P. A. Exitatory amino acids as a final common pathway for neurologic disorders. New Engl. J. Med., 330, 613—662 (1994).
https://doi.org/10.1056/NEJM199403033300907
11. Paschenko P. S., Sukhoterin A. F. The structural organization of the normal rat area postrema and under conditions of cronic exposure to gravitational loads. Morfologia, 117, 36—41 (2000).
12. Rao V. L., Murthy C. R. K. Uptake, release and metabolism of glutamate and aspartate by rat cerebellar subcellular preparations. Biochem. Mol. Biol. Int., 29, 711—717 (1993).
13. Savina E. A., Alekseev E. I. Functional state of the posterior lobe of rats exposed aboard the biosatellite «Cosmos-936». Arch. anat. Gistol Embriol., 78 (1), 62—68 (1980).
14. Siesjo B. K. Basic mechanisms of traumatic brain damage. Ann. Emergency Med., 22, 959—969 (1993).
https://doi.org/10.1016/S0196-0644(05)82736-2

15. Vatassery G. T., Lai J. C. K., Smith W. E., Quach H. T. Aging is associated with a decrease in synaptosomal glutamate uptake and an increase in the susceptibility of synaptosomal vitamine E to oxidative stress. Neurochemical Res., 23, 121 — 125 (1998).
https://doi.org/10.1023/A:1022495804817