The space radiation: nature, biological effects and shielding

1Muradian, Kh.K
1State Institution "D.F.Chebotarov Institute of Gerontology of the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(1):107-113
https://doi.org/10.15407/knit2002.01.107
Publication Language: Russian
Abstract: 
The latest findings in origin, biological effects and shielding of the space ionizing radiation (SIR) are reviewed. It is stressed that after the impending implementation of artificial gravity, SIR could become the most serious concern for deep space travelers. SIR is more effective in induction of the genome- and cell-associated damages, compared with the conventional radioactive sources. The shielding of SIR is augmented due to the secondary spallation S -radiation and possible cooperation with weightlessness and other negative impacts of a space flight. The panspermia concept postulating the existence of living organisms, e. g. bacterial spores, in space and their natural interplanetary transportation is discussed.
Keywords: biological effects, ionizing radiation, shielding
References: 
1. Bondarenko V. A., Mitrikas V. G., Tsetlin V. V. Radiation environment of orbital complex "Mir" during minimum of the 22-nd solar cycle (1994-1996). Aviakosm. Ekolog. Med., 34 (1), 21—24 (2000) [in Russian].
2. Guliaeva T. L. Lethal Manifestations of Meteorological and Cosmic Factors. Biofizika, 43 (5), 833—839 (1998) [in Russian].
3. Badhwar G. D. Radiation measurements in low Earth orbit: U. S. and Russian results. Health Phys., 79, 507— 514 (2000).
https://doi.org/10.1097/00004032-200011000-00007
4. Bagshaw M., Irvine D., Davies D. M. Exposure to cosmic radiation of British Airways flying crew on ultralong haulroutes. Occup. Environ. Med., 53, 495—498 (1996).
https://doi.org/10.1136/oem.53.7.495
5. Brackley M. E., Curry J., Glickman B. W. A note on the relevance of human population genetic variation and molecular epidemiology to assessing radiation health risk for space travellers. Mutat. Res., 430, 293—298 (1999).
https://doi.org/10.1016/S0027-5107(99)00141-4
6. Brooks A., Bao S., Rithidech K., et al. Relative effectiveness of HZE iron-56 particles for the induction of cytogenetic damage in vivo. Radiat. Res., 155, 353—359 (2001).
https://doi.org/10.1667/0033-7587(2001)155[0353:REOHIP]2.0.CO;2
7. Chang P. Y., Kanazawa N., Lutze-Mann L., Winegar R. HZE particle radiation induces tissue-specific and p53-dependent mutagenesis in transgenic animals. Phys. Medica, 17 (Suppl.), 1—3 (2000).
8. Clark B. C. Planetary interchange of bioactive material: probability factors and implications. Orig. Life Evol. Biosph., 31, 185—197 (2001).
https://doi.org/10.1023/A:1006757011007
9. Cucinotta F. A., Wilson J. W. Initiation-promotion model of tumor prevalence in mice from space radiation exposures. Radiat. and Environ. Biophys., 34, 145—149 (1995).
https://doi.org/10.1007/BF01211540
10. Davies P. C. The transfer of viable microorganisms between planets. Ciba Found Symp., 202, 304—311 (1996).
11. Dousset N., Moatti J. P., Moatti N., et al. Influence of the environment in space on the biochemical characteristics of human low density lipoproteins. Free Radic. Res., 24, 69—74 (1996).
https://doi.org/10.3109/10715769609088001
12. Edwards A. A. The use of chromosomal aberrations in human lymphocytes for biological dosimetry. Radiat. Res., 48 (5 Suppl.), 39—44 (1997).
https://doi.org/10.2307/3579715
13. George K., Wu H., Willingham V., et al. High- and low-LET induced chromosome damage in human lymphocytes: a time-course of aberrations in metaphase and interphase. Int. J. Radiat. Biol., 77, 175—183 (2001).
https://doi.org/10.1080/0955300001003760
14. Hamm P. B., Billica R. D., Johnson G. S., et al. Risk of cancer mortality among the Longitudinal Study of Astronaut Health (LSAH) participants. Aviat. Space Environ Med., 69, 142—144 (1998).
15. Hamm P. B., Nicogossian A. E., Pool S. L., et al. Design and current status of the longitudinal study of astronaut health. Aviat. Space Environ. Med., 71, 564—70 (2000).
16. Hartman P. S., Hlavacek A., Wilde H., et al. A comparison of mutations induced by accelerated iron particles versus those induced by low earth orbit space radiation in the FEM-3 gene of Caenorhabditis elegans. Mutat. Res., 474, 47—55 (2001).
https://doi.org/10.1016/S0027-5107(00)00154-8
17. Hollander J., Gore M., Fiebig R., et al. Spaceflight downregu-lates antioxidant defense system in rat liver. Free Radic. Biol. Med., 24, 385—90 (1998).
https://doi.org/10.1016/S0891-5849(97)00278-5
18. Horneck G. Impact of microgravity on radiobiological processes and efficiency of DNA repair. Mutat. Res., 430, 221—228 (1999).
https://doi.org/10.1016/S0027-5107(99)00133-5
19. Ianzini F., Cherubini R., Mackey M. A. Mitotic catastrophe induced by exposure of V79 Chinese hamster cells to low-energy protons. Int. J. Radiat. Biol., 75, 717— 723 (1999).
https://doi.org/10.1080/095530099140050
20. James J. T. Carcinogens in spacecraft air. Radiat. Res., 148 (5 Suppl.), 11 — 16 (1997).
https://doi.org/10.2307/3579711
21. Kawata T., Durante M., Furusawa Y., et al. Dose-response of initial G2-chromatid breaks induced in normal human fibroblasts by heavy ions. Int. J. Radiat. Biol., 77, 165—174 (2001).
https://doi.org/10.1080/09553000010007686
22. Lackner J. R., DiZio P. Artificial gravity as a countermeasure in long-duration space flight. J. Neurosci. Res., 62, 169—176 (2000).
https://doi.org/10.1002/1097-4547(20001015)62:2<169::AID-JNR2>3.0.CO;2-B
23. Levine D. D., Greenleaf J. E. Immunosuppression during spaceflight deconditioning. Aviat. Space Environ. Med., 69, 172—177 (1998).
24. Nicholson W. L., Munakata N., Horneck G., et al. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environment. Microbiol. Mol. Biol. Reviews, 64, 548—572 (2001).
https://doi.org/10.1128/MMBR.64.3.548-572.2000
25. Nicogossian A. E., Pober D. F., Roy S. A. Evolution of telemedicine in the space program and earth applications. Telemed. J. E. Health, 7, 1 — 15 (2001).
https://doi.org/10.1089/153056201300093813
 26. Pross H. D., Casares A., Kiefer J. Induction and repair of DNA double-strand breaks under irradiation and microgravity. Radiat. Res., 153, 521—525 (2000).
https://doi.org/10.1667/0033-7587(2000)153[0521:IARODD]2.0.CO;2
27. Setlow R. B. The U. S. National Research Council's views of the radiation hazards in space. Mutat. Res., 430, 169—175 (1999).
https://doi.org/10.1016/S0027-5107(99)00127-X
28. Simonsen L. C, Wilson J. W., Kim M. H., Cucinotta F. A. Radiation exposure for human Mars exploration. Health. Phys., 79, 515—525 (2000).
https://doi.org/10.1097/00004032-200011000-00008
29. Sinclair W. K. Dose limits for astronauts. Health Phys., 79, 585—590 (2000).
https://doi.org/10.1097/00004032-200011000-00017
30. Stoupel E., Israelevich P., Gabbay U., et al. Correlation of two levels of space proton flux with monthly distribution of deaths from cardiovascular disease and suicide. J. Basic Clin. Physiol. Pharmacol., 11, 63—71 (2000).
https://doi.org/10.1515/JBCPP.2000.11.1.63
31. Sullivan R. The hazards of reproduction in space. Acta Obstat. Gynecol. Scand., 75, 372—377 (1996).
https://doi.org/10.3109/00016349609033334
32. Takahashi A., Ohnishi K., Takahashi S., et al. The effects of microgravity on ligase activity in the repair of DNA double-strand breaks. Int. J. Radiat. Biol., 76, 783—788 (2000).
https://doi.org/10.1080/09553000050028931
33. Thomson I. EVA dosimetry in manned spacecraft. Mutation Res., 430, 203—209 (1999).
https://doi.org/10.1016/S0027-5107(99)00131-1
34. Timchenko A. N., Muradian Kh. K. Optimal hypogravity: a panacea in manned space flights? 17th Congress of the International Association of Gerontology, Vancouver, Canada, July 1—6, 2001, Abstracts. Gerontology, 47 (Suppl. 1), 102 (2001).
35. Todd P., Pecaut M. J., Fleshner M. Combined effects of space flight factors and radiation on humans. Mutat. Res., 430, 211—219 (1999).
https://doi.org/10.1016/S0027-5107(99)00132-3
36. Yang T. C., George K., Craise L. M., Durante M. Initiation of oncogenic transformation in mammary epithelial cells by charged particles. Radiat. Oncol. Investig., 5, 134—138 (1997).
https://doi.org/10.1002/(SICI)1520-6823(1997)5:3<134::AID-ROI10>3.0.CO;2-6
37. Yang T. C., George K., Johnson A. S., et al. Biodosimetry results from space flight Mir-18. Radiat. Res., 148 (5 Suppl.), 17—23 (1997).
https://doi.org/10.2307/3579712
38. Yasuda H., Badhwar G. D., Komiyama T., Fujitaka K. Effective dose equivalent on the ninth Shuttle—Mir mission (STS-91). Radiat. Res., 154, 705—713 (2000).
https://doi.org/10.1667/0033-7587(2000)154[0705:EDEOTN]2.0.CO;2

39. Young L. R. Artificial gravity considerations for a Mars exploration mission. Annals N. Y. Acad. Sci., 871, 367—378 (1999).
https://doi.org/10.1111/j.1749-6632.1999.tb09198.x