Microgravity and ultrahigh vacuum as specific components of technological environment and new feasibilities of semiconductor technology

1Baranskii, PI, 1Babich, VM, 2Svechnikov, SV, 3Gaidar, GP, 4Ptushynskyi, Yu.G
1V.Ye. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2V.Ye. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
4Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(4):096-099
https://doi.org/10.15407/knit2002.04.096
Publication Language: Ukrainian
Abstract: 
We discuss the role of the microgravity (residual microaccelerations) and ultrahigh vacuum in semiconductor crystal growth by means of the nonampule crusible-free zonal melting on the board of the spacecraft under orbital flight conditions. Both of the factors mentioned above are of great importance for the space semiconductor technology.
Keywords: microgravity, semiconductor crystal, ultrahigh vacuum
References: 
1. Avduevskii V. S. The main tasks of studying hydromechanics and heat transfer under conditions of weightlessness. Izv. AN SSSR. Ser. fiz., 49 (4), 627—634 (1985) [in Russian].
2. Baranskii P. I., Babich V. M., Gaidar A. V., et al. Desorption from silicon single crystals in electron-beam crucible-free zone melting. In: Fizika jelektronnyh materialov (FIJeM'02): Abstracts of the Intern. Conf., Russia, Kaluga, October 1—4, 2002, 62—63 (Kaluga, 2002) [in Russian].
3. Berzhaty V. I., Zvorykin L. L., Ivanov A. I., Pchelyakov O. P., Sokolov L. V. Prospects for the implementation of vacuum technology under orbital flight. Avtomaticheskaya Svarka, No. 10 (559), 108—116 (1999) [in Russian].
4. Verezub N. A., Zubritskaya I. N., Egorov A. V., et al. (1985) Investigation of  peculiarities of producing some semiconductor systems in unit «Splav». Izv. AN SSSR, Ser. Physics, 49 (4), 687—690 (1985) [in Russian].
5. Volkov P. K. Qualitative differences in fluid hydrodynamics in terrestrial and cosmic conditions. Poverhnost', rentgenovskie, sinhrotronnye i nejtronnye issledovanija, No. 9, 101 — 105 (2001) [in Russian].
6. Zemskov V. S., Ivanov L. I., Savitsky E. M., et al. Main results of experiments under zero-gravity and some problems of space materials science. Izv. AN SSSR, Ser. Physics, 49 (4), 673—680 (1985) [in Russian].
7. Zemskov V. S., Raukhman M. R., Shalimov V. P. Influence of Microgravity on Homogeneity of Semiconductor Crystals Growing onboard Space Vehicles by the Methods of Directional Crystallization: Results and Prospects of Studies in IMET RAN. Poverhnost', rentgenovskie, sinhrotronnye i nejtronnye issledovanija, No. 9, 41—47 (2001) [in Russian].
8. Paton B. E. (Ed.) Space: technology, material science, constructions: proceedings, 527 p. (E.O. Paton Electric Welding Institute NAN of Ukraine, Kiev, 2000) [in Russian].
9. Nanophysics and Nanoelectronics: Abstracts of 2nd Russian–Ukrainian Seminar, Kiev, November 21—24, 2000, 123 p. (ISP NAS of Ukraine, Kiev, 2000) [in Russian].
10. Nanophotonics: Proc.of the Meeting, Nizhny Novgorod, March 26—29, 2001, 314 p. (Institute for Physics of Microstructures RAS, 2001) [in Russian].
11. Osovskiǐ V. D., Ptushinskiǐ Yu. G., Sukretnyi V. G., Chuǐkov B. A. Isotope effects and the manifestation of 2d phase transitions in the kinetics of low-temperature (down to 5 K) hydrogen adsorption. Fizika Nizkikh Temperatur, 27 (9-10), 1138— 1147 (2001) [in Russian].
https://doi.org/10.1063/1.1414574
12. Paton B. E., Asnis E. A., Zabolotin S. P., et al. Peculiarities of the fabrication of semiconductor materials under microgravity  conditions. Avtomaticheskaya Svarka, No. 10 (559), 97—99 (1999) [in Russian].
13. Paton B. E., Lapchinsky V. F. Welding and related technologies in space, 184 p. (Nauk. Dumka, Kiev, 1998) [in Russian].
14. Paton B. E., Lapchinskii V. F., Asnis E.A., et al. Urgent tasks of producing materials for electronic engineering under microgravity. Kosm. nauka tehnol., 4 (5-6), 95—98 (1998) [in Russian].
15. Tomchuk P. M. Semiconductor character of the properties of islet metal films. Tezysy dopovidej Mizhnarodnoi' shkoly-konferencii' z aktual'nyh pytan' fizyky napivprovidnykiv, Drohobych, June 23—30, 1999, P. 60 (DDPU, Drohobych, 1999) [in Ukrainian].
https://doi.org/10.1116/1.568972
16. Baranskii P. I. Babich V. M., Baran N. P., et al. Investigation of formation conditions of thermal donors-I and -II in oxygen-containing n-type Si within the temperature range 400 to 800 °C. Phys. Status Solidi (a), 78, 733—739 (1983).
https://doi.org/10.1002/pssa.2210780243
17. Bulavenko S. Yu., Melnik P. V., Nakhodkin M. G. STM-images of the atoms in the corner holes on the Si (111)7x7 surface with bismuth-covered tips. Surface Sci., 469, 127— 132 (2000).
https://doi.org/10.1016/S0039-6028(00)00798-6
18. Fedorovich R. D., Naumovets A. G., Tomchuk P. M. Electron and light emission from island metal films and generation of hot electrons in nanoparticles. Phys. Repts, 328 (2-3), 73—179 (2000).
https://doi.org/10.1016/S0370-1573(99)00094-0
19. Melfi L. T., Outlaw R. A. Henser J. E., Brock F. J. Molecular shield: An orbiting low-density materials laboratory. J. Vac. Sci. and Technol., 13 (3), 698—701 (1976).
https://doi.org/10.1149/1.2407385
20. Nezaki T., Yatsurug Y., Akiyama N. Concentration and Behavior of Carbon in Semiconductor Silicon. J. Electrochem. Soc., 117 (12), 1566—1568 (1970).
https://doi.org/10.1149/1.2407385
21. Pagnia H., Sotnic N. Bistable switching in Electroformed Metal-Insulator-Metal Devices. Phys. Status Solidi (a), 108 (1), 11—65 (1988).
https://doi.org/10.1002/pssa.2211080102
22. Paton B. E., Asnis E. A., Zabolotin S. P., et al. New capabilities of growing semiconductor materials by the method of electron beam crucibleless zone melting under microgravity. Kosm. nauka tehnol., 6 (4), 140—141 (2000).

23. Song L. W., Benson B. W., Watkins G. D. Bistable interstitial-substitutinal carbon pair in silicon. Phys. Rev. B. Solid State, 42 (9), 5765—5783 (1990).
https://doi.org/10.1103/PhysRevB.42.5765