The numerical decision of the connected problem of dynamics and aerodynamics of wind turbine rotor

1Redchits, D, 1Prykhodko, A
1Oles Honchar National University of Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2005, 11 ;(Supplement1):027-035
https://doi.org/10.15407/knit2005.01s.027
Publication Language: Russian
Abstract: 
For the decision of the connected problem of dynamics and aerodynamics of horizontal- and vertical- axial wind turbine an approximate engineering method and numerical algorithm have been developed on the basis of Navier-Stokes equations. The algorithms of the decision of non-stationary Navier-Stokes equations of an incompressible liquid in curvilinear coordinates have been realized on the basis of explicit, implicit, implicit with LU-factorization and finite-volume schemes. Testing of numerical algorithms of the decision of Navier-Stokes equations of incompressible liquid in curvilinear system of coordinates on the tasks about development of current in a square, cubic cavity and streamline of sphere has been carried out. The results of the decision of the connected problem of dynamics and aerodynamics of a wind turbine rotor have been analyzed.
References: 

1. Abramovskiy E. R. Aerodynamics of Wind Turbines, 220 p. (DGU, Dnepropetrovsk, 1987) [in Russian].
2. Belotserkovskii S. M., Vasin V. A., Loktev B. E. Construction of an unsteady nonlinear theory of the lifting rotor. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 97- 101 (1979) [in Russian].
https://doi.org//10.1007/BF01409813
3. Belotserkovskii S. M., and Nisht M. I. Separated and Unseparated Ideal-Fluid Flow Over Thin Wings, 352 p. (Nauka, Moscow, 1978) [in Russian].
4. Belotserkovsky S. M., and Skripach B. K. Aerodynamic Derivatives of an Aircraft and a Wing at Subsonic Flow Velocities, 424 p. (Nauka, Moscow, 1975) [in Russian].
5. Belotserkovsky S. M., Skripach B. K., and Tabachnikov V. G. A Wing in Unsteady Gaz Flow, 352 p. (Nauka, Moscow, 1971) [in Russian].
6. Beam R. M., Warming R. F. An implicit factored scheme for the compressible Navier- Stokes equations. Raketnaja tehnika i kosmonavtika, 16 (4) 145-156 (1978) [in Russian].
https://doi.org//10.2514/3.60901
7. Derkach P. Kh., Gorod'ko S. V. Wrapping of a propeller motor with an axisymmetric stream of incompressible ideal fluid, Dep. v VINITI 14.04.87; No. 2599-V87, 10 p. (Dnepropetrovsk, 1987) [in Russian].
8. Johnson W. Helicopter Theory, Vol. 1, 578 p. (Mir, Moscow, 1983) [in Russian].
9. Zhukovsky N. E. The vortex theory of the propeller. Vol. 4, 395- 612 (Vol. 1-7; Vol. 4) (Gostehizdat, Moscow, Leningrad, 1950) [in Russian].
10. Zhukovsky N. E. Vortex Theory of Frontal Resistance. Vol. 4, 271-298 (Vol. 1-7; Vol. 4) (Gostehizdat, Moscow, Leningrad, 1950) [in Russian].
11. Zavadovsky V. K., et al. Propellers, 324 p. (Sudostroenie, Leningrad, 1983) [in Russian].
12. Kolgan V. P. Application of the minimum-derivative principle in the construction of finite-difference schemes for numerical analysis of discontinuous solutions in gas dynamics. Uchenye Zapiski TsaGI, 3 (6), 68-77 (1972) [in Russian].
13. Kravets A. S. Characteristics of aviation profiles, 332 p. (Oborongiz, Moscow, Leningrad, 1939) [in Russian].
14. Modi V. J., Akutsu T. Wall Confinement Effects for Spheres in the Reynolds Number Range of 30-2000. Teor. osnovy inzh. raschetov, 196 (1), 138-146 (1984) [in Russian].
https://doi.org//10.1115/1.3242407
15. Preuss R. D., Suciu E. O., Morino L. Unsteady Potential Aerodynamics of Rotors with Applications to Horizontal-Axis Windmills. Raketnaja tehnika i kosmonavtika, No. 5, 44-53 (1980) [in Russian].
16. Sabinin G. Kh. Theory and aerodynamic calculation of wind engines, 71 p. (TsaGI, Moscow, 1931) [in Russian].
17. Steger J. L. Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries. Raketnaja tehnika i kosmonavtika, 16 (7), 51-60 (1978) [in Russian].
https://doi.org//10.2514/3.7377
18. Fletcher C. A. J. Computational techniques for fluid dynamics, Vol. 1, 501 p.; Vol. 2, 552 p. (Mir, Moscow, 1991) [in Russian].
https://doi.org//10.1007/978-3-642-58239-4_1
19. Chorin A. J. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys., 2, 12-26 (1967).
https://doi.org//10.1016/0021-9991(67)90037-X
20. Froud R. E. In: Transaction: Institute of Naval Architects, 30, 330 p. (1889).
21. Harten A. A higt resolution scheme for the computatio of wear solution of hyperbolic conservation laws. J. Comput. Phys., 49, 357-393 (1983).
https://doi.org//10.1016/0021-9991(83)90136-5
22. Preuss R. O., Sussiu E. O., Morino L. Potential aerodynamic analysis of horizontal-axis windmills. AIAA Paper, No. 132, 1132-1140 (1977).
23. Rankin W. I. M. In: Transaction: Institute of Naval Architects, 6, 13 p. (1865).
24. Wilson R. E., Zissaman R. B. S., Walker S. N. Aerodynamic performance of wind turbines, 194 p. (Washington, 1976).
https://doi.org//10.2172/7315651