Dynamical processes in the midlatitude mesosphere

1Panasenko, SV, 1Rozumenko, VT, 1Tyrnov, OF, 2Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
2V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Kosm. nauka tehnol. 2006, 12 ;(2-3):037-044
https://doi.org/10.15407/knit2006.02.037
Publication Language: Russian
Abstract: 
Some characteristics of the mesosphere dynamical processes are investigated by using the partial reflection radar. The time dependencies of the wind drift velocity vector and its zonal and meridional components as well as root-mean-square random velocity component are analised. The parameters of the wave processes (the acoustic gravity waves) are studied. Significant diurnal and seasonal variations of the values under study are discovered during the observation time. Our results are compared with the results of other investigators which relate to the midlatitudes of the northern hemisphere.
Keywords: mesosphere, radar, time dependencies
References: 
1. Anderson T. W. The Statistical Analysis of Time Series, 755 p. (Mir, Moscow, 1976) [in Russian].
2. Burmaka V. P., Taran V. I., Chernogor L. F. Ionospheric wave disturbances accompanied by rocket launches against a background of natural transient processes. Geomagnetizm i Aeronomiia, 44 (4), 518—534 (2004) [in Russian].
3. Garmash K. P., Rozumenko V. T., Tyrnov O. F., et al. Radiophysical Studies of the Processes in the Near-Earth Plasma Disturbed by High-Energy Sources. Pt. I. Zarubezhnaya radioelektronika. Uspekhi sovremennoi radioelektroniki, No. 7, 3—15 (1999) [in Russian].
4. Gossard E. E., Hooke W. H. Waves in the Atmosphere, 532 p. (Mir, Moscow, 1978) [in Russian].
5. Gritchin A. I., Dorokhov V. L., Kontsevaya L. G., et al. Stationary complex of apparatus for studying the lower ionosphere by the method of partial reflections. Vestnik Kharkov. Universiteta. Radiofizika i Elektronika, No. 318, 21—24 (1988) [in Russian].
6. Danilov A. D., Kazimirovsky E. S., Vergasova G. V., Khachikyan G. Ya. Meteorological effects in the ionosphere, 232 p. (Gidrometeoizdat, Leningrad, 1987) [in Russian].
7. Kazimirovskii E. S., Vergasova G. V. Response of winds in the lower thermosphere to a geomagnetic storm in March 1989. Geomagnetizm i Aeronomiia, 31 (5), 917—922 (1991) [in Russian].
8. Kazimirovskii E. S., Kokourov V. D. Motions in the ionosphere, 344 p. (Nauka, Novosibirsk, 1979) [in Russian].
9. Merzlyakov E. G., Portnyagin Yu. I. Long-term changes in the parameters of winds in the midlatitude lower thermosphere (90-100 km). Izv. RAN. Fizika atmosfery i okeana, 35 (4), 531—542 (1999) [in Russian].
10. Panasenko S. V. Parameters of dynamic processes in the mesopause region from the data of the Kharkov radar of partial reflections. In: Interaction of fields and radiation with matter: Proceedings of the VII Young Scientists Conference, 148—151 (ISZF SO RAN, Irkutsk, 2004) [in Russian].
11. Panasenko S. V., Rozumenko V. T., Tyrnov O. F., Chernogor L. F. Dynamical processes in the lower ionosphere. Kosm. nauka tehnol., 9 (5-6), 76—80 (2003) [in Russian].
12. Panasenko S. V., Chernogor L. F. Statistical characteristics of radio signals received by the radar of partial reflections. Radiofiz. Elektron., 9 (1), 234—247 (2004) [in Russian].
13. Panasenko S. V., Chernogor L. F. Some results of investigation of wave disturbances in the mesosphere. Kosm. nauka tehnol., 10 (5-6), 122—127 (2004) [in Russian].
 
14. Portnyagin Y. I., Shprenger K., Lysenko I. A., et al. Wind Measurements at Heights of 90 –100 km by Groundbased Methods, 240 p. (Gidrometeoizdat, Leningrad, 1978) [in Russian].
15. Chernogor L. F. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Physics and Radio Astronomy, 8 (1), 59—106 (2003) [in Russian].
16. Chernogor L. F. The Earth-atmosphere-geospace environment system as an opened dynamic nonlinear one. Kosm. nauka tehnol., 9 (5-6), 96—105 (2003) [in Russian].
17. Harris M. J., Arnold N. F., Aylward A. D. A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT) general circulation model. Ann. Geophys., 20 (2), 225— 235 (2002).
https://doi.org/10.5194/angeo-20-225-2002
18. Hocking W. K., Rottger J. The structure of turbulence in the middle and lower atmosphere seen by and deduced from MF, HF and VHF radar, with special emphasis on small-scale features and anisotropy. Ann. Geophys., 19 (8), 933—944 (2001).
https://doi.org/10.5194/angeo-19-933-2001
19. Holdsworth D. A., Vincent R. A., Reid I. M. Mesospheric turbulent velocity estimation using the Buckland Park MF radar. Ann. Geophys., 19 (8), 1007— 1017 (2001).
https://doi.org/10.5194/angeo-19-1007-2001
20. Jacoby Ch.. Portnyagin Yu. I., Solovjova T. V., et al. Climatology of the semidiurnal tide at 52—56° N from ground-based radar wind measurements 1985—1995. J. Atmos. Sol.-Terr. Phys., 61 (13), 975— 991 (1999).
https://doi.org/10.1016/S1364-6826(99)00065-6
21. Kashcheyev B. L., Oleynikov A. N. Dynamic regime of the mesopause — lower thermosphere at midlatitudes of the northern hemisphere by radio meteor observations. J. Atmos. and Terr. Phys., 56 (9), 1197— 1207 (1994).
https://doi.org/10.1016/0021-9169(94)90057-4
22. Manson A., Meek C., Hagan M., et al. Seasonal variations of the semi-diurnal and diurnal tides in the MLT: multi-year MF radar opbservations from 2 to 70° N, and the GSWM tidal model. J. Atmos. Sol.-Terr. Phys., 61 (12), 809—828 (1999).
https://doi.org/10.1016/S1364-6826(99)00045-0
23. Manson A. H., Meek C. E., Hall G., McMurray R. Winds and waves from the Canadian prairies (CNSR) triple-MF radar system. Geophys. Res. Lett., 20 (13), 1375—1378 (1993).
https://doi.org/10.1029/93GL01317
24. Manson A. H., Meek C. E., Koshyk J. et al. Gravity wave activity and dynamical effects in the middle atmosphere (60—90 km): observations from an MF/MLT radar network, and results from the Canadian Middle Atmosphere Model (CMAM). J. Atmos. Sol.-Terr. Phys., 64 (1), 65—90 (2002).
https://doi.org/10.1016/S1364-6826(01)00097-9
25. Meek C. E. An efficient method for analyzing ionospheric drifts data. J. Atmos. and Terr. Phys., 42 (9-10), 835—839 (1980).
https://doi.org/10.1016/0021-9169(80)90087-2
26. Middleton H. R., Mitchell N. J., Muller H. G. Mean winds of the mesosphere and lower thermosphere at 52° N in the period 1988—2000. Ann. Geophys., 20 (1), 81—91 (2002).
https://doi.org/10.5194/angeo-20-81-2002
27. Namboothiri S. P., Manson A. H., Meek C. E. Variations of mean winds and tides in the upper middle atmosphere over a solar cycle, Saskatoon, Canada, 52° N, 107° W. J. Atmos. and Terr. Phys., 55 (10), 1325— 1334 (1993).
https://doi.org/10.1016/0021-9169(93)90101-4
28. Namboothiri S. P., Manson A. H., Meek C. E. Variations of mean winds and solar tides in the mesosphere and lower thermosphere over time scales ranging from 6 months to 11 yr: Saskatoon, 52° N, 107° W. J. Atmos. and Terr. Phys., 56 (10), 1313—1325 (1994).
https://doi.org/10.1016/0021-9169(94)90069-8
29. Portnyagin Y. I., Solovjova T. V. Global empirical wind model for the upper mesosphere/lower thermosphere. I. Prevailing wind. Ann. Geophys., 18 (3), 300—315 (2000).
https://doi.org/10.1007/s00585-000-0300-y
30. Roble R. G., and Readly E. C. A thermosphere/ionosphere/mesosphere electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30—500 km). Geophys. Res. Lett., 21 (6), 417—420 (1994).
https://doi.org/10.1029/93GL03391
31. Singer W., Bremer J., Hoffman P., et al. Geomagnetic influences upon tides—winds from MLT radars. J. Atmos. and Terr. Phys., 56 (10), 1301 — 1311 (1994).
https://doi.org/10.1016/0021-9169(94)90068-X

32. Vandepeer B. G. V., Hocking W. K. A comparison of Doppler and Spaced Antenna Techniques for the measurement of turbulent energy dissipation rates. Geophys. Res. Lett., 20 (1), 17—20 (1993).
https://doi.org/10.1029/92GL01116