Diurnal and seasonal variations of ionospheric plasma parameters on solar activity abatement

1Lyashenko, MV, 2Sklyarov, IB, 3Chernogor, LF, 2Chernyak, Yu.V
1Institute of Ionosphere of the NAS of Ukraine and MES of Ukraine, Kharkiv, Ukraine
2Institute of Ionosphere of the National Academy of Sciences of Ukraine and Ministry for Education and Sciences of Ukraine, Kharkiv, Ukraine
3V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Kosm. nauka tehnol. 2006, 12 ;(2-3):045-058
https://doi.org/10.15407/knit2006.02.045
Publication Language: Russian
Abstract: 
Diurnal and seasonal variations of ionospheric plasma parameters in the height range of 190 to 1030 km for four characteristic geophysical periods (winter and summer solstices, vernal and autumnal equinoxes) are considered. As expected, ionospheric parameters exhibit significant seasonal and diurnal variations. Region features in diurnal and seasonal electron density as well as in ion and electron temperature dependences are revealed or confirmed. Computer simulation of dynamic processes parameters variations in ionosphere is performed. Our results will be used for the development of ionospheric model elements for the Central Europe region.
Keywords: geophysical periods, ionospheric plasma, variations
References: 
1. Akimov L. A., Grigorenko E. I., Taran V. I., et al. Integrated radio physical and optical studies of dynamic processes in the atmosphere and geospace caused by the solar eclipse of August 11, 1999. Zarubezhnaya radioelektronika. Uspekhi sovremennoi radioelektroniki, No. 2, 25—63 (2002) [in Russian].
2. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 528 p. (Nauka, Moscow, 1988) [in Russian].
3. Burmaka V. P., Taran V. I., Chernogor L. F. Ionospheric wave disturbances accompanied by rocket launches against a background of natural transient processes. Geomagnetizm i Aeronomiia, 44 (4), 518—534 (2004) [in Russian].
4. Burmaka V. P., Taran V. I., Chernogor L. F. Results of Studying Wave-Like Disturbances in the Ionosphere Using the Incoherent Scatter Method. Usp. Sovrem. Radioelektron., No. 3, 4—35 (2005) [in Russian].
5. Burmaka V. P., Chernogor L. F., Tcherniak Y. V. Geospace Wave Disturbances Accompanying “Soyuz” and “Proton” Launches and Flights. Radio Physics and Radio Astronomy, 10 (3), 254—272 (2005) [in Russian].
6. Grigorenko Ye. I., Emel'yanov L. Ya., Pazura S. A., et al. Disturbances in the ionospheric plasma during the severe magnetic storm on 29-31 May 2003: The results of observations with the Kharkov incoherent scatter radar. Uspehi sovremennoj radiojelektroniki, No. 4, 21—39 (2005) [in Russian].
7. Grigorenko E. I., Lysenko V. N., Pazjura S. A., et al. Anomalous Ionospheric Storm of March 21, 2003. Kosm. nauka tehnol., 10 (1), 4—11 (2004) [in Russian].
8. Grigorenko Ye. I., Lysenko V. N., Taran V. I., Chernogor L. F. Results of radiophysical studies of the processes in the ionosphere accompanying the very strong magnetic storm on 25 September 1998. Uspehi sovremennoj radiojelektroniki, No. 9, 57—94 (2003) [in Russian].
9. Grigorenko Ye. I., Paziura S. A., Puliaiev V. A., et al. Dynamic processes in the ionosphere during the geospace storm on 30 May and solar eclipse on 31 May 2003. Kosm. nauka tehnol., 10 (1), 12—25 (2004) [in Russian].
10. Gringauz K. I., Bassolo V. S. Structure and properties of the Earth's plasmasphere: experimental data and problems of their interpretation. (Review). Geomagnetizm i Aeronomiia, 30 (1), 1 —17 (1990) [in Russian].
11. Dzyubanov D. A., Zakharov I. G., Lyashenko M. V. Variations of the electron concentration of the ionosphere in quiet conditions according to the Kharkov incoherent scattering radar. Bull. Nation. Tech. Univ. “Kharkiv Polytechnic Institute”. Series: Radio Physics and Ionosphere, 4 (7), 31—34 (2003) [in Russian].
12. Dzyubanov D. A., Zakharov I. G., Lyashenko M. V. The simulation of noon electron density values of the F2 ionospheric peak with the use of Kharkiv incoherent scatter radar data use of the Doppler high-frequency radar. Kosm. nauka tehnol., 10 (2-3), 28—35 (2004) [in Russian].
13. Dzyubanov D. A., Zakharov I. G., Lyashenko M. V., Tyrnov O. F. Simulation of midnight values of the electron concentration at the maximum of the F2 region of the ionosphere according to the data of the incoherent scattering radar in Kharkov. In: 4th Ukrainian Conference for Perspective Space Researches: Abstracts, 55 (Crimea, Ponizovka, 2004) [in Russian].
14. Emel'yanov L. Ya., Grigorenko E. I., Sklyarov I. B. Radio-physical observations of vertical plasma drift in the F region of the ionosphere on the Kharkov non-coherent scattering radar. Radiotehnika: Vseukr. mezhved. nauch.-tehn. sb., Is. 136, 102—108 (2004) [in Russian].
15. Ivanov-Kholodny G. S.,  Mikhailov A.V. Prediction of the State of the Ionosphere, 190 p. (Gidrometeoizdat, Leningrad, 1980) [in Russian].
16. Avdyushin S. I., Danilov A. D. (Eds.) Ionospheric–Magnetic Service. Current state, problems and perspectives, 243 p. (Gidrometeoizdat, Leningrad, 1987) [in Russian].
17. Mikhailov A. V., Boenkova N. M. Asymmetry of annual variations of the F2 region in the Northern and Southern Hemispheres. Geomagnetizm i Aeronomiia, 20 (2), 251—254 (1980) [in Russian].
18. Mikhailov A. V., Ostrovskii G. I. Winter increase in electron density in the nighttime F2 region and its possible explanation. Geomagnetizm i Aeronomiia, 20 (1), 29—32 (1980) [in Russian].
19. Rishbath H., Garriott O.K. Introduction to Ionospheric Physics, 304 p. (Gidrometeoizdat, Leningrad, 1975) [in Russian].
20. Taran V. I. A study of the natural and artificially disturbed ionosphere by the incoherent scatter method. Geomagnetizm i Aeronomiia, 41 (5), 659—666 (2001) [in Russian].
21. Chernogor L. F. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Physics and Radio Astronomy, 8 (1), 59—106 (2003) [in Russian].
22. Chernogor L. F. The Earth-atmosphere-geospace environment system as an opened dynamic nonlinear one. Kosm. nauka tehnol., 9 (5-6), 96—105 (2003) [in Russian].
https://doi.org/10.15407/knit2003.05.096
23. Bhuyan P. K., Chamua M., Subrahmanyam P., Garg S. C. Diurnal, seasonal and latitudinal variations of electron temperature measured by the SROSS C2 satellite at 500 km altitude and comparison with the IRI. Ann. Geophys., 20, 807—815 (2002).
https://doi.org/10.5194/angeo-20-807-2002
24. Champion K. S. W. Dynamics and structure of the quiet thermosphere. J. Atmos. Terr. Phys., 37 (6-7), 915—926 (1975).
https://doi.org/10.1016/0021-9169(75)90006-9
25. Evans J. V. Seasonal and sunspot cycle variations of F-region electron temperatures and protonospheric heat fluxes. J. Geophys. Res., 78 (13), 2344 (1973).
https://doi.org/10.1029/JA078i013p02344
26. Farelo A. F., Herraiz M., Mikhailov A. V. Global morphology of night-time NmF2 enhancements. Ann. Geophys., 20, 1795—1806 (2002).
https://doi.org/10.5194/angeo-20-1795-2002
27. Fledin A. E. MSIS-86 thermospheric model. J. Geophys. Res., 92, 4649—4662 (1987).
https://doi.org/10.1029/JA092iA05p04649
28. Fledin A. E., Mayr El. G., Reber C. A., et al. Empirical model of global thermospheric temperature and composition based on data OGO-6 quad pole mass spectrometer. J. Geophys. Res., 79 (1), 215—225 (1974).
https://doi.org/10.1029/JA079i001p00215
29. Mikhailov A. V., Schlegel K. Equinoctial transitions in the ionosphere and thermosphere. Ann. Geophys., 19, 783—796 (2001).
https://doi.org/10.5194/angeo-19-783-2001
30. Salah J. E., Evans J., Wand R. N. Seasonal variations in the thermosphere above Millstone Hill. Radio Sci., 9 (2), 231—238 (1974).
https://doi.org/10.1029/RS009i002p00231
31. Schunk R. W., Nagy A. F. Electron temperature in the F region of the ionosphere: theory and observations. Rev. Geophys. Space Phys., 16 (3), 355—399 (1978).
https://doi.org/10.1029/RG016i003p00355

32. Schunk R. W., Nagy A. F. Ionospheres: Physics, Plasma Physics, and Chemistry. — Cambridge atmospheric and space science series, 555 p. (2000).