Particles dynamics and their non-thermal radiation in heterogeneous magnetosphere with variable magnetic field

1Kryvdyk, V
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2006, 12 ;(4):078-085
https://doi.org/10.15407/knit2006.04.078
Publication Language: Ukrainian
Abstract: 
A particles dynamics, their acceleration and the non-thermal radiation in the magnetospheres of sky bodies with the heterogeneous particles distribution are investigated for the certain initial particles distribution in the magnetosphere. It is shown that charged particles will accelerate in variable magnetic fields and will generate the non-thermal electromagnetic radiation. It is demonstrated that the celestial bodies with variable magnetic fields must be powerful sources of the non-thermal electromagnetic radiation which can be observed by means of ground-based and space instruments. The values of the flux radiation depend on the distance to sky bodies, on the value of their magnetic fields and on the particles spectrum in the magneto-sphere.
Keywords: dynamics, magnetosphere, variable magnetic fields
References: 
1. Alfvén H., Fälthammar C.-G. Cosmical Electrodynamics: Fundamental Principles, 260 p. (Mir, Moscow, 1967) [in Russian].
2. Bakhareva M. F., Tverskoi B. A. Particle energy variations in a variable interplanetary electromagnetic field. Geomagnetizm i Aeronomiia, 21 (3), 401—411 (1981) [in Russian].
3. Ginzburg V. L. The Magnetic Fields of Collapsing Masses and the Nature of Superstars. Doklady AN SSSR, 156 (1), 43—46 (1964) [in Russian].
4. Ginzburg V. L., Syrovatskii S. I. The Origin of Cosmic Rays, 384 p. (Izd-vo Akad. nauk SSSR, Moscow, 1963) [in Russian].
5. Zel'dovich Ya. B., Novikov I. D. The theory of gravitation and stellar evolution, 494 p. (Nauka, Moscow, 1977) [in Russian].
6. Manchester R. N., Taylor J. H. Pulsars, 292 p. (Mir, Moscow, 1980) [in Russian].
7. Smith F. Pulsars, 267 p. (Mir, Moscow, 1979) [in Russian].
8. Shapiro S. L., Teukolsky S. A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, 665 p. (Mir, Moscow, 1985) [in Russian].
9. Angel J. R. P. Magnetism in white dwarfs. Annu. Rev. Astron. and Astrophys., 16, 487—519 (1978).
https://doi.org/10.1146/annurev.aa.16.090178.002415
10. Arnett W. D. Gravitational collapse of evolved stars as a problem in physics. In: Smarr L. (Ed.) Sources of gravitational radiation, 163—174 (Cambridge, 1979).
11. Bosnjak Z. A., Celotti G., Ghirlanda M., et al. GAMMA-ray bursts associated with supernovae: a systematic analysis of BATSE GRB candidates. Astron. and Astrophys., 447 (1), 121 — 132 (2006).
https://doi.org/10.1051/0004-6361:20052803
12. Fryer C. L., Heger A. Binary merger progenitors for GAMMA-ray bursts and hypernovae. Astrophys. J., 623 (1), 302—313 (2005).
https://doi.org/10.1086/428379
13. Goldreich P., Julian W. H. Pulsar electrodynamics. Astrophys. J., 157 (2), 869—880 (1969).
https://doi.org/10.1086/150119
14. Goldreich P., Weber S. Homologously collapsing stellar cores. Asrtophys. J., 238 (3), 991—997 (1980).
https://doi.org/10.1086/158065
15. Gunningam C. T., Price R. H., Moncrief V. Radiation from collapsing relativistic stars. I. Linearized odd-parity radiation. Astrophys. J., 224 (2), 643—667 (1978).
16. Gunningam C. T., Price R. H., Moncrief V. Radiation from collapsing relativistic stars. II. Linearized even-parity radiation. Astrophys. J., 230 (3), 870—892 (1979).
17. Gunningam C. T., Price R. H., Moncrief V. Radiation from collapsing relativistic stars. III. Second order perturbation of collapse with rotation. Astrophys. J., 236 (2), 674—692 (1980).
18. Henricsen R. N., Chau W. Y., Chau K. L. Magnetic dipole radiation from a exploding or collapsing magnetised rotating spheroid. Astrophys. J., 227 (3), 1013— 1018 (1979).
https://doi.org/10.1086/156809
19. Kryvdyk V. Electromagnetic radiation from collapsing stars. I. Power-series distribution of particles in magnetospheres. Mon. Notic. Roy. Astron. Soc., 309 (2), 593—598 (1999).
https://doi.org/10.1046/j.1365-8711.1999.02869.x
20. Kryvdyk V. High-energy emission from presupernova. Adv. Space Res., 33 (2), 484—486 (2004).
https://doi.org/10.1016/j.asr.2003.07.025
21. Kryvdyk V. Radiation bursts from a presupernova collapsar. Springer Proc. Phys., 99, 215—216 (2005).
https://doi.org/10.1007/3-540-26633-X_29
22. Kryvdyk V., Agapitov A. Heterogeneous magnetosphere of accretion-induced collapsing white dwarfs. ASP Conf. Ser., 330, 277—280 (2005).
23. Kryvdyk V. G., Agapitov O. V. Heterogeneous magnetosphere of collapsing star. ASP Conf. Ser., 330, 415—416 (2005).
24. Meszaros P. Theories of gamma-ray bursts. Annu. Rev. Astron. and Astrophys., 40, 137—169 (2002).
https://doi.org/10.1146/annurev.astro.40.060401.093821
25. Morley P. D., Schmidt I. Electromagnetic pulse from final gravitational stellar collapse. Astron. and Astrophys., 384 (2), 899—907 (2002).
https://doi.org/10.1051/0004-6361:20020133
26. Mizuno Y., Yamada S., Koide S., Shibata K. General relativistic MHD simulations of the gravitational collapse of a rotating star with magnetic field as a model of GAMMA-ray bursts. Astrophys. J., 606 (1), 395—412 (2004).
https://doi.org/10.1086/382945
27. Nomoto Ken'ichi, Maeda Keiichi, Tominaga Nozomu. Hypernovae and GAMMA-ray bursts. Astrophys. J. Suppl. Ser., 298 (1), 81—86 (2005).
28. Ruffini Remo, Fraschett F., Vitagliano L., She-Sheng X. Observational signatures of an electromagnetic overcritical gravitational collapse. Intern. J. Modern Phys. D, 14 (1), 131 — 142 (2005).
https://doi.org/10.1142/S0218271805006146
29. Umeda Hideyuki, Tominaga Nozomu, Maeda Keiichi, Nomoto Ken’ichi. Precursors and main-bursts of GAMMA ray bursts in a hypernova scenario. Astrophys. Lett., 633 (1), L17—L20 (2005).
https://doi.org/10.1086/498136

30. Woosley S. E., Heger A. The progenitor stars of GAMMA -ray bursts. Astrophys. J., 637 (2), 914— 921 (2006).
https://doi.org/10.1086/498500