Detection of flux cosmic ray of ultrahigh energy in the lunar orbit

1Vaschenko, VN, 2Golubnichii, PI, 2Krivonosov, SD, 3Pavlovich, VN, 4Rusov, VD, 2Filonenko, AD, 5Fomin, SP, 6Shulga, NF
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Volodymyr Dahl East Ukrainian National University, Lugansk, Ukraine
3Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
4Odessa National Polytechnic University, Odessa, Ukraine
5Akhiezer Institute for Theoretical Physics of the National Scientific Centre “Kharkiv Physics-Technical Institute” of the National Academy of Sciences of Ukraine, Kharkiv
6Akhiezer Institute for Theoretical Physics of the National Scientific Centre “Kharkiv Physics-Technical Institute” of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(2):68-72
https://doi.org/10.15407/knit2008.02.068
Publication Language: Russian
Abstract: 
We present the main features of the project of the detector of space radiation of an ultrahigh energy of over 1022 eV a board the Moon satellite. The urgency of the problem and the possibility of realization of such aggregate are shown. Strength of the radio signal caused by the current of excess electron cascade and S -electrons is quite sufficient for a power threshold 22 of 1022 eV in an orbit at 1000 km. It is found that the most suitable frequency range is 50‒100 MHz. Rough speed of the account will make 150 events in a year in this case in this case.
Keywords: excess electron, power threshold, radio signal
References: 
1. Askar'yan G. A. Excess Negative Charge of an Electron-Photon Shower and its Coherent Radio Emission. JETP, 41, No. 2(8), 616— 618 (1961) [in Russian].
2. Askar'yan G. A. Coherent Radio Emission from Cosmic Showers in Air and in Dense Media. JETP, 48 (3), 988—990 (1965) [in Russian].
3. Golubnichii P. I., Filonenko A. D. Detection of cosmic rays of superhigh energies with a moon's artificial satellite. Kosm. nauka tehnol., 5 (4), 87—92 (1999) [in Russian].
4. Gusev G. A., Lomonosov B. N., Pichkhadze K. M., et al. Detection of ultrahigh-energy cosmic rays and neutrinos by radio method using artificial lunar satellites. Kosmich. issled., 44 (1), 22—42 (2006) [in Russian].
5. Filonenko A. D. Detection of very high energy cosmic rays by the UTR-2 decameter telescope. Pisma v ZhETF, 70 (10), 639—641 (1999) [in Russian].
6. Filonenko A. D. Superhigh-energy cosmic ray detection using shower radioemission. Uspehi fiz. nauk, 172 (4), 439—471 (2002) [in Russian].
7. Filonenko A. D. Frequency spectrum of Cherenkov radiation and radioastronomical method for measuring the flux of ultrahigh-energy cosmic particles. Pisma v ZhETF, 86 (5), 339— 343 (2007) [in Russian].
8. Akhiezer A. I., Shul'ga N. F., Fomin S. P. The Landau-Pomeranchuk-Migdal Effect. (Monograph.) 215 p. (Physics Reviews; 22) (Sci. Pubis, UK, Cambridge, 2005).
9. Alvarez-Muniz J., Marques E., Vazques R. A. and Zas E. Radio pulses in dense media: simulation versus approximations. Proc. ICRC-2001, h. 1305—1308 (2001).
10. Golubnichiy P. I., Filonenko A. D. The detecting of space rays of superhiger energies with the help of the artificial satellite of the Moon. The fifth Sino-Russian-Ukrainian Symposium on Space Science and Technology Held Jointly with The First International Forum on Astronautics and Aeronautics, 543—548 (Harbin, P. R. China, 2000).
11. Rusov V. D., Sharf I. V. One — parameter cascade model of multiple hadrons production in inelastic M-processes at high energies. Nucl. Phys., A764, 460— 475 (2006).
https://doi.org/10.1016/j.nuclphysa.2005.09.014

12. Rusov V. D., Zelentsova T. N., Kosenko S. I., et al. Cascade parametrization of multiplicsty distributions in inelastic pp and pp~ — interactions on energy interval in c.m.s. Vs = 20—1800 GeV. Phys. Lett., B504, 213—217 (2001).