Magnetohydrodynamic deceleration of «magnetized» planets in solar wind plasma
Heading:
1Shuvalov, VA, 2Bandel, KA, 2Priymak, AI, 2Kochubey, GS 1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine 2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine |
Kosm. nauka tehnol. 2009, 15 ;(6):03-13 |
https://doi.org/10.15407/knit2009.06.003 |
Publication Language: Russian |
Abstract: The lift and drag forces of magnetized planets in the low-density plasma of solar wind are determined using the method of physical modelling. It is shown that the lift and drag forces change similarly relative to moments of magnetic dipoles of planets with the distance to the Sun. Two parameters have a defined effect on the values of the lift and the drag forces : the relation of magnetic pressure of the planet field to the velocity head of solar wind and the angle of a magnetic dipole axial slope towards the planet rotation axis.
|
Keywords: drag forces, magnetic pressure, planet |
References:
1. Alpert Ia. L. Waves and artificial bodies in the near-earth plasma, 214 p. (Nauka, Moscow, 1974) [in Russian].
2. Baranov V. B., Krasnobaev K. V. Hydrodynamic Theory of Cosmic Plasma, 431 p. (Nauka, Moscow, 1977) [in Russian].
3. Belenkaya E. S. Magnetospheres of planets with an intrinsic magnetic field. Uspehi fiz. nauk, 179 (8), 809—835 (2009) [in Russian].
4. Wood G. P. Electrical and electromagnetic braking of satellite in Earth's upper atmosphere. In: Gazovaja dinamika kosmicheskih apparatov, 258—277 (Mir, Moscow, 1965) [in Russian].
5. Gurevich A. V., Moskalenko A. M. On the braking of bodies moving in a rarefied plasma. In: Issledovanija kosmicheskogo prostranstva, 241—254 (Nauka, Moscow, 1965) [in Russian].
6. Gurevich A. V., Pitaevskii L. P., Smirnova V. V. Ionospheric aerodynamics. Uspehi fiz. nauk, 99 (1), 3—49 (1969) [in Russian].
7. Karafoli E. High-speed aerodynamics, 740 p. (Izd-vo Akad. nauk SSSR, Moscow, 1960) [in Russian].
8. Kussoy M. I., Stewart D. A., & Horstman C. C. Sphere drag in near-free-molecule hypersonic flow. Raketnaja tehnika i kosmonavtika, 8 (11) 231—232 (1970) [in Russian].
9. Kinslow M., Potter J. L. Drag of Spheres in Rarefied Hypervelocity Flow. Raketnaja tehnika i kosmonavtika, 1 (11), 3—11 (1963) [in Russian].
10. Koshmarov Yu. A., Ryzhov Yu. A. Applied Dynamics of Rarified Gas, 184 p. (Mashinostroenie, Moscow, 1977) [in Russian].
11. Krasnov N. F. Aerodynamics, 632 p. (Vyssh. shk., Moscow, 1971) [in Russian].
12. Lyons L. R., Williams D. J. Quantitative Aspects of Magnetospheric Physics, 312 p. (Mir, Moscow, 1987) [in Russian].
13. Lyubimov A. N., Rusanov V. V. Gas flows around blunt bodies, Pt. II, 380 p. (Nauka, Moscow, 1970) [in Russian].
14. McDaniel E. W. Collision Phenomena in Ionized Gases, 832 p. (Mir, Moscow, 1967) [in Russian].
15. Maslennikov M. V., Sigov V. S., Churkina G. P. Numerical Experiments on Flow of Rarefied Plasma around Bodies of Various Shapes. Kosmicheskie issledovanija, 6 (2), 220—227 (1968) [in Russian].
16. Mitchner M., Kruger Ch. H. Partially ionized gases, 496 p. (Mir, Moscow, 1976) [in Russian].
17. Vernov S. N. (Ed.) A Model of Outer Space (Cosmos Model-82), vol. 2, 770 p. (Mosk. Gos. Univ., Moscow, 1983) [in Russian].
18. Nechtel E., Pitts U. Experimental studies of resistance to movement of satellites due to electrical forces. Raketnaja tehnika i kosmonavtika, 2 (6), 222—225 (1964) [in Russian].
19. Nishida A. Geomagnetic Diagnosis of the Magnetosphere, 299 p. (Mir, Moscow, 1980) [in Russian].
20. Raizer Yu. P. Gas Discharge Physics, 592 p. (Nauka, Moscow, 1987) [in Russian].
21. Wong S. P. The interaction of the solar wind with the Moon and some other celestial bodies. Raketnaja tehnika i kosmonavtika, 8 (6), 191—197 (1970) [in Russian].
22. Hadzhimihalis K., Brandin K. Effect of wall temperature on the resistance of a sphere in a hypersonic rarefied gas flow. In: Dinamika razrezhennyh gazov, Ed. by V. P. Shidlovsky, 274—282 (Mir, Moscow, 1976) [in Russian].
23. Shuvalov V. A. Modeling the interaction of bodies with the ionosphere, 180 p. (Nauk. dumka, Kiev, 1995) [in Russian].
24. Shuvalov V. A., Kochubei G. S., Priimak A. I., et al. Contact Diagnostics of High-Velocity Flows of Rarefied Plasma. Teplofizika vysokih temperatur [High Temperature], 43 (3), 343—351 (2005) [in Russian].
https://doi.org/10.1007/s10740-005-0071-y
https://doi.org/10.1007/s10740-005-0071-y
25. Shuvalov V. A., Pismenny N. I., Priimak A. I., Kochubei G. S. Probe diagnostics of rarefied flows partially dissociated plasma. Pribory i tehnika jeksperimenta, No. 3, 92—100 (2007) [in Russian].
26. Shuvalov V. A., Churilov A. E., Bystritskii M. G. Diagnostics of Flows of Pulsed Plasma by Probe, Microwave, and Photometric Methods. Teplofizika vysokih temperatur [High Temperature], 38 (6), 877—885 (2000) [in Russian].
https://doi.org/10.1023/A:1004124919825
https://doi.org/10.1023/A:1004124919825
27. Matting F. W. Approximate bridging relations in the transitional regime between continuum and free-molecule flow. J. Spacecraft and Rockets, 8 (1), 35—40 (1971).
https://doi.org/10.2514/3.30214
https://doi.org/10.2514/3.30214
28. Paranicas C. P., Decker R. B., Williams D. J., et al. Recent research highlights from planetary magnetospheres and heliosphere. Johns Hopkins Apl. Technical Digest, 26 (2), 156—163 (2005).