Effectiveness of monitoring the catastrophic processes of space and terrestrial origin

1Chernogor, LF
1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Space Sci. & Technol. 2019, 25 ;(1):38-47
https://doi.org/10.15407/knit2019.01.038
Publication Language: Russian
Abstract: 
The work concerns an urgent problem - the assessment of the effectiveness of monitoring catastrophic processes of space and terrestrial origin. The purpose of this study is to provide quantitative estimates for the effectiveness of the monitoring aimed at predicting catastrophic processes caused by space and terrestrial sources. The efficiency is assessed using the methods of mathematical statistics and signal detection theory. The obtained relations allow calculation indexes of the effectiveness of early warning of hazards (catastrophes) and of the costs of organizing the continuous complex multi-instrument monitoring of physical fields and their parameters characterized catastrophes of both origins.
         The index of the efficiency of the catastrophe warning has been shown to depend only on the conditional probability of the omission of a hazard. The cost index depends on five parameters: (1) the a priori probability of the catastrophe, (2) the conditional probability of a false alarm and (3) the conditional probability of the omission of a hazard, (4) the relative costs associated with a false alarm, and (5) costs saved by a successful prevention of catastrophe consequences, if prediction is correct. The gain from monitoring a few kinds of catastrophes of space and terrestrial origin has been estimated. Solar superstorms, the fall of large cosmic bodies, space gamma-ray bursts, and supernovae bursts have been chosen as cosmic catastrophes. Volcano eruptions, earthquakes, and other hazards have been chosen as terrestrial catastrophes. It has been shown that in many cases the gain could be significant. In other cases, the insignificance of the gain is due to the impossibility to attain low values of probabilities of the omission of a hazard and of a false alarm.
Keywords: celestial bodies entering, earthquake, false alarm probability, gane, index of the costs, index of the early warning, miss probability, solar superstorm, space gamma ray bursts, supernova star bursts, volcano eruption
References: 
 1. Burst of supernova could affect on development Earth life. — URL: https://universemagazine.com/3700/
2. Zyelyk Ya. I., Kussul’ N. M., Skakun S. V., Shelestov A. Yu. Natural disaster risk assessment based on the ensemble processing and technology of heterogeneous geospatial data fusion. Kosm. nauka technol., 17 (1), 60— 64 (2011).
DOI: 10.15407/knit2011.01.060
3. Kurakin A. L., Lobkovsky L. I. Economic optimization of specifications for geoecological monitoring systems. Doklady Earth Sciences, 446 (1), 1086—1088 (2012).
DOI: 10.1134/S1028334X12090048
4. Osipov V. N. Geoecology is interdisciplinary science about ecological problems of geospheres. Geoecology. Engineering geology. Hydroecology. Geocriology, 1, 4—18 (1993) [in Russian].
5. Turchin A. Natural catastrophes and antropic principle. Problems of risk control and safety. Proceeding of System Analyze Institute of RAS. 31, 306—332 (2007) [in Russian].
6. Chernogor L. F. Physics and Ecology of Disasters, 556 p. (Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ., 2012) [in Russian].
7. Chernogor L. F., Domnin I. F. Physics of Geospace Storms: monograph, 408 p. (Kharkiv, Ukraine: Kharkiv V. N. Karazin National University Publ., 2014) [in Russian].
8. Bormann P.; Saul J. Earthquake Magnitude, in Encyclopedia of Complexity and Applied Systems Science, 3, 2473— 2496 (Springer-Verlag New York, 2009).
9. Bryan S. E.; Peate I. U.; Peate D. W.; Self S.; Jerram D. A.; Mawby M. R.; Marsh J. S.; Miller J. A. The largest volcanic eruptions on Earth. Earth-Science Reviews. 102, (3–4). 207—227. (2010). Bibcode:2010ESRv.102..207B.
doi:10.1016/j.earscirev.2010.07.001.
10. Engdahl E. R., Villaseñor A. Chapter 41: Global Seismicity: 1900—1999, in Lee, W.H.K., Jennings, P.C., Kisslinger, C., Kanamori, H. International Handbook of Earthquake and Engineering Seismology, Part A, 665—690 (Academic Press, 2002). ISBN 0-12-440652-1.
11. Fan Y.; Piran T. Gamma-ray burst efficiency and possible physical processes shaping the early afterglow. Monthly Notices of the Royal Astronomical Society, 369 (1), 197—206 (2006). arXiv:astro-ph/0601054. Bibcode:2006MNRAS.369..197F.
doi:10.1111/j.1365- 2966.2006.10280.x.
12. Gendre B., Stratta G., Atteia J. L., Basa S., Boër M., Coward D. M., Cutini S., D’Elia V., Howell E., Klotz A., Piro L. The Ultra-Long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant? The Astrophysical Journal, 766 (1), 30 (2013).
DOI:10.1088/0004-637X/766/1/30.
13. Bostrom N., Cirkovic M. M. (Eds.) Global Catastrophic Risks, 576 p. (Oxford University Press, 2011).
14. Gr nthal G. Earthquakes, Intensity, in Gupta H. eds, Encyclopedia of Solid Earth Geophysics, 237—242 (2011). ISBN 978-90-481-8701-0.
15. Handbook of Cosmic Hazards and Planetary Defense [edited by Pelton J. N., Allahdadi F.], LXX, 1127 p. (Springer, Cham, New York, NY, 2015).
16. Hatakeyama N., Uchida N., Matsuzawa T., Nakamura W. Emergence and disappearance of interplate repeating earthquakes following the 2011 M9.0 Tohoku-Oki earthquake: Slip behavior transition between seismic and aseismic depending on the loading rate. Journal of Geophysical Research: Solid Earth, 122 (7), 5160—5180 (2017).
17. Hurricanes: climate and socioeconomic impacts 1 [Eds by Henry F. Diaz, Roger S. Pulwarty], 292 p. (Springer-Verlag Berlin Heidelberg, 1997).
18. Jonkman S. N., van Gelder P. H. A. J. M., Vrijling J. K. An overview of quantitative risk measures for loss of life and economic damage. Journal of Hazardous Materials, A99, 1—30 (2003).
DOI: 10.1016/S0304- 3894(02)00283-2
19. Kent A. A critical look at risk assessment for global catastrophes. J. Ref.: Risk Anal., 24, 157—168 (2004).
20. Levan A. J.; Tanvir N. R.; Starling R. L. C.; Wiersema K.; Page K. L.; Perley D. A.; Schulze S.; Wynn G. A.; Chornock R.; Hjorth J.; Cenko S. B.; Fruchter A. S.; O’Brien P. T.; Brown G. C.; Tunnicliffe R. L.; Malesani D.; Jakobsson P.; Watson D.; Berger E.; Bersier D.; Cobb B. E.; Covino S.; Cucchiara A.; de Ugarte Postigo A.; Fox D. B.; Gal-Yam A.; Goldoni P.; Gorosabel J.; Kaper L.; et al. (2013-12-30). A new population of ultra-long duration gamma-ray bursts. The Astrophysical Journal, 781 (1), 1—28 (2014).
DOI:10.1088/0004-637x/781/1/13.
21. Natural hazards, unnatural disasters: the economics of effective prevention, 254 p. (The World Bank and The United Nations, 2010).
22. Rappaport N. E., Fernandez-Partagas J. The Deadliest Atlantic Tropical Cyclones, 1492-1996 / NOAA Technical Memorandum NWS NHC 47.
23. Scalo J., Wheeler C. J. Astrophysical and Astrobiological Implications of Gamma-Ray Burst Properties. Astrophys. J., 566, 723—737 (2002).
24. Vedrenne G.; Atteia J.-L. Gamma-Ray Bursts: The brightest explosions in the Universe. (Springer, 2009). ISBN 978- 3-540-39085-5.
25. Woosley S. E., Bloom J. S. The Supernova Gamma-Ray Burst Connection. Annual Review of Astronomy and Astrophysics, 44, 507—556 (2006). DOI:10.1146/annurev. astro.43.072103.150558.